
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 1

Nebula: A Coordinating Grammar of Graphics
Ran Chen, Xinhuan Shu, Jiahui Chen, Di Weng, Junxiu Tang, Siwei Fu, Yingcai Wu

Abstract—In multiple coordinated views (MCVs), visualizations across views update their content in response to users’ interactions in
other views. Interactive systems provide direct manipulation to create coordination between views, but are restricted to limited types of
predefined templates. By contrast, textual specification languages enable flexible coordination but expose technical burden. To bridge
the gap, we contribute Nebula, a grammar based on natural language for coordinating visualizations in MCVs. The grammar design is
informed by a novel framework based on a systematic review of 176 coordinations from existing theories and applications, which
describes coordination by demonstration, i.e., how coordination is performed by users. With the framework, Nebula specification
formalizes coordination as a composition of user- and coordination-triggered interactions in origin and destination views, respectively,
along with potential data transformation between the interactions. We evaluate Nebula by demonstrating its expressiveness with a
gallery of diverse examples and analyzing its usability on cognitive dimensions.

Index Terms—Coordination, multiple coordinated views, interactive visualization, grammar of graphics

F

1 INTRODUCTION

MULTIPLE coordinated views (MCVs), wherein visual-
izations across views update their content in response

to users’ interactions in other views, are prevalent in mod-
ern visualization systems [1]. An example of MCVs is the
scatterplot matrix, wherein users select points in one scatter-
plot, and other scatterplots will highlight the corresponding
points (Fig. 1). By coordinating multiple views and syn-
chronizing visualizations automatically, MCVs facilitate a
comprehensive and multifaceted analysis, presenting un-
foreseen data relations and improving user performance [1].

Despite the widespread use of MCVs, constructing ef-
fective and expressive coordination between views remains
challenging. Interactive systems, such as Tableau, only pro-
vide limited types of coordination based on predefined tem-
plates (low expressiveness). Textual specification languages
(e.g., D3 [2], Vega [3], and Vega-Lite [4]) allow users to
author flexible coordination, but it can be difficult because
these languages lack a proper abstraction of coordination
(low usability). Specifically, the difficulties are manifested
in two aspects. First, these languages model coordination
as a complex composition of basic visualization elements
(e.g., marks, transforms, encodings) and interaction con-
figurations (e.g., initialization, events) rather than explicit
interaction responses (e.g., selecting, highlighting). Such a
poor closeness of mapping [5] may increase the gulf of execu-
tion [6] in the construction of coordination. Second, users
usually coordinate visualizations from different libraries to
construct various MCVs. However, the incompatible mech-
anisms of libraries exacerbate the difficulty of coordinating

• Ran Chen, Jiahui Chen, Di Weng, Junxiu Tang, and Yingcai Wu are with
the State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310027,
China. They are also with the Zhejiang Lab, Hangzhou 311121, China.
Email: {chenran928, jhchen6, dweng, tangjunxiu, ycwu}@zju.edu.cn.

• Xinhuan Shu is with the Hong Kong University of Science and Technol-
ogy, Hong Kong, China. Email: xinhuan.shu@connect.ust.hk.

• Siwei Fu is with the Zhejiang Lab, Hangzhou 311121, China. Email:
fusiwei339@gmail.com.

• Yingcai Wu and Siwei Fu are the co-corresponding authors.

Manuscript received Oct 30, 2020; revised Feb 3, 2021.

visualizations. For example, users must write excessive code
to synchronize the selection of Vega-Lite with the d3-event of
D3 and establish coordination between the two libraries.

The gap between the expressiveness and usability in co-
ordinating visualizations motivates us to develop Nebula, a
grammar for the rapid construction of flexible coordination
based on a novel demonstration-driven coordination frame-
work. Our approach is threefold. First, we capture and ana-
lyze the current views of coordination through an extensive
review of the existing theories and applications to abstract
coordination properly. We observe that although researchers
model coordination as data flows and state changes between
multiple views [7], they incline to describe coordinations by
demonstration, i.e., how coordination is performed by users.
Second, we propose a novel demonstration-driven coordi-
nation framework based on the observation. This frame-
work formalizes coordination as a composition of user- and
coordination-triggered interactions, along with the potential
data transformations between the two types of interactions.
Such a framework complements the state-of-the-art research
on the concise representation of coordination. Third, we
design Nebula, a grammar that allows users to construct
coordination based on the framework intuitively with the
structured templates written in natural language. For exam-
ple, the coordination in a scatterplot matrix (Fig. 1) can be
constructed in Nebula simply with “select items in any scat-
terplot, then highlight items in other scatterplots.” Moreover, the
architecture of Nebula decouples coordination specifications
from visualization design, thereby improving compatibility
with different visualization libraries.

We evaluate the expressiveness and usability of Neb-
ula with two different approaches [8], respectively. For
expressiveness, we create a gallery of the diverse examples
that reproduce the frequently-occurring coordinations in the
reviewed literature. We also demonstrate how the coordi-
nation constructed by Nebula could support complicated
visual analysis tasks with a real-world application of MCVs.
For usability, we conduct a qualitative analysis based on
the Cognitive Dimensions of Notation framework [5]. The

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 2

1 2

2 2

" Select items in any scatterplot, then highlight items in other scatterplots."1 2

Fig. 1. Top: Example of MCVs showing an interactive scatterplot matrix,
where the points selected by users in any scatterplot will highlight
the corresponding points in the other scatterplots. Bottom: A Nebula
specification which describes the above coordination by demonstration
in a natural language sentence.

result indicates that Nebula shows some advantages in most
dimensions, suggesting that it may offer potential usability
benefits to users.

2 RELATED WORK

This section presents works regarding foundations of coor-
dination and coordination support in visualization tools.

2.1 Foundations of Coordination

A variety of theories, models, and frameworks have been
proposed since the late 1990s to characterize MCVs [9]. Most
of these works focus on the design of multiple views [10],
[11], [12], [13]. By contrast, we focus on existing works
on coordination. North and Shneiderman [1] defined co-
ordination as a link between visualizations and classified
coordinations into six categories based on user actions and
data relationships at both ends of the link. Following a
similar definition, Baldonado et al. [11] generalized user
actions as interactions. North et al. [14] extended the line of
research and proposed a conceptual model named “Snap-
Together Visualization” based on the relational data model.
In the model, multiple views are coordinated by joining
data from different data tables through primary- and foreign-
key actions. North et al. [15] further discussed visualization
schemas based on the Snap model and represented MCVs
as graphs whose nodes and edges respectively represent
visualizations and coordinations. Pattison et al. [16] pre-
sented a component-based framework for the implemen-
tation of generic visualizations and coordinations in the
Model-View-Controller (MVC) pattern. Visualization com-
ponents in this framework are abstracted into data models,
while coordination components are used to observe changes
in data and trigger changes of dependent data. Boukhelifa et
al. [17] enhanced the framework by shared abstract objects.
Weaver [7] combined the shared-object direct coordination
mechanism [17] and an indirect coordination mechanism
based on an expression-based visual abstraction language

to enable precise control of coordination, which visualized
the structures of MCVs as dataflow graphs [18]. Koytek et
al. [19] focused on brushing and linking coordination and
developed a specific design space that divides coordination
into the source, link, and target to refer to data points and
relationships between views.

To conclude, researchers commonly regard coordination
as a dataflow graph in MCVs. However, such a dataflow
graph is often invisible and cannot directly reflect the in-
teraction responses in coordination. This work extends the
dataflow graph and introduces a novel framework that
abstracts coordination by demonstration. In particular, the
framework formalizes coordination as a composition of
interactions and potential data transformations.

2.2 Coordination Support in Visualization Tools

A multitude of visualization authoring tools has emerged
in recent years to assist in constructing MCVs. This sec-
tion reviews the realization of coordination in these tools
to support MCVs, which is classified into two categories:
interactive systems and programming-based tools [20].

Grammel et al. [21] and Mei et al. [22] surveyed a
variety of interactive systems for authoring visualization
in a non-programming environment. Nevertheless, only a
small part of these systems support coordinating multi-
ple visualizations. For example, Snap [14] enables users
to coordinate views by joining data tables of these views
based on relational data models and coupling primary-
and foreign-key actions on these data tables. Improvise [7]
provides live properties, a direct shared-object coordination
mechanism, along with an indirect coordination mechanism
(coordinated queries), using a visual abstraction language.
However, creating coordinations in these systems, which
require high learning overhead and verbose operations, can
be tedious for users. To address the issue, advanced visual
models or paradigms out of programming are applied to
help construct coordinations. For example, business intelli-
gence (BI) software, such as Tableau (formerly Polaris [23]),
enable users to create common coordinations based on
predefined templates. MyBrush [19] supports customizing
various brushing and linking coordinations by configuring
the details (e.g., visual attributes, temporality) of source,
link, and target. Lyra2 [24] allows users to rapidly create
interactions in multiple views by demonstration and a set
of heuristics. Dataflow systems (e.g., VisFlow [25]) provide
dataflow operators that can construct coordination along
the dataflow, in which interactions in upstream views could
change the visual representation of downstream views. The
construction can be further simplified With the assistance of
natural language interfaces (e.g., FlowSense [26]). Despite
their capability to reduce technical burdens, these methods
suffer from limited expressiveness, i.e., only supporting
limited types of coordinations.

By contrast, programming-based tools allow users to
author custom coordination. Visualization programming
toolkits and libraries, such as ProtoVis [27] and D3 [2],
can achieve extremely high expressiveness. However, they
also face similar problems to Snap and Improvise, namely,
considerable programming expertise and tedious execu-
tion codes. To alleviate the issue, declarative grammars

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 3

grounded in The Grammar of Graphics [28] are introduced
to enable rapidly generating visualizations through con-
cise JSON syntax. These grammars mask the underlying
execution details and focus on design decision-making by
composing visualization elements, thus increasing efficiency
and reducing the learning cost. Recently, various declarative
grammars have emerged [3], [4], [29], [30], [31]; however,
these grammars are not targeted at coordination and lack
specific design. For example, Vega-Lite requires users to
first configure interaction with its interaction primitive selec-
tion and then apply selection to basic visualization building
blocks (e.g., transform, encoding) in different views to specify
coordination. Such a grammar highly couples visualization
design and coordination specifications, requiring users to
frequently switch context between individual visualization
elements and coordination between visualizations, which
introduces obstacles to the construction of coordination.

In summary, authoring toolkits balancing expressiveness
and usability for creating coordination remain absent. Thus,
we propose a novel coordination grammar, Nebula, which
allows users to specify coordinations by demonstration in
structured natural language templates. The Nebula archi-
tecture decouples coordination specifications from visual-
ization design, thus improving compatibility to integrating
external visualization libraries.

3 TERMINOLOGY

To clarify the scope of our research, we introduce the related
terms used in our paper and present the model in Fig. 2.

MCVs. MCVs are developed to aid exploratory visual-
ization. MCVs generally comprise a set of views and coordi-
nations between these views [1]. The coordinated views are
updated accordingly upon the users’ interactions in some
of the views. A typical example is the interactive scatterplot
matrix (Fig. 1).

View. A view comprises a visualization or a composition
of several visualizations, along with potential widgets (e.g.,
button, slider, and text), to control visual properties [4],
such as size, title, and label. For example, each scatterplot
in a scatterplot matrix can be regarded as a view, while
the scatterplot matrix can also be regarded as a view when
cooperating with other visualizations. Moreover, a view can
accept interactions and manipulate its visual representations
accordingly. In particular, interactions will result in the
modification of the backing data and states in the view [32].

Coordination. Coordination creates links among the
views. These links propagate the responses of user in-
teractions (i.e., visual changes) from one view to others.
Specifically, these links propagate the data and state changes
between the views. For example, after a selection interaction
is performed by users in one view to specify a subset of data,
the coordination may trigger other views to update their
subsets accordingly (e.g., highlight the data). Data transfor-
mation, such as subsetting, merging, filtering, and intersec-
tion, is often required to resolve data inconsistencies among
the views as the data changes are propagated. Moreover,
advanced algorithms, such as clustering and reduction, are
needed for remarkably complex data transformation sce-
narios. Coordination can also be modeled as a dataflow
graph [7], where the nodes denote the data and states in

MCVs

View #2
dataset selection

...scalescolor

View #1
dataset selection

...scalescolor
Data

Transformations

Coordinations

Fig. 2. In traditional models, MCVs comprise views and coordinations.
Views control the visual representations by their backing data and
states. Coordinations propagate interaction responses by building links
to transmit and transform these data and states, which can be modeled
as a coordination dataflow graph.

the views, while the links represent data transmission and
transformation between the views.

4 LITERATURE REVIEW AND ANALYSIS

To abstract the concept of coordination properly, we conduct
an extensive literature review and capture the view of
coordination in visualization. We choose this methodology
because it covers a wide range of real practices of creating
coordination. Consequently, the survey collects a corpus of
176 coordination techniques and informs the design of the
coordination framework by demonstration.

4.1 Survey on Coordination
Toward a deep and comprehensive understanding of coor-
dination, we surveyed coordination techniques from papers
and visualization systems to cover as many scenarios as pos-
sible. First, we began by collecting papers on coordination
theories and surveys. Next, we expanded the collection by
studying commercial visualization systems and academic
visualization authoring tools, which typically implement a
wide range of coordinations to facilitate the construction
of MCVs. Finally, to enrich the diversity, we selected a
collection of design study papers involving different data
types (e.g., high-dimensional, time-series, geospatial, and
hierarchical) published in the past decade, along with the
corresponding visual analytics systems that integrate rich
coordination applications for various visualization tasks.

We then manually extracted coordinations from these
papers and systems for the subsequent analysis. Specifically,
we first captured each coordination by reading these papers
or documents, watching their videos, and using the online
demos. We then recorded authors’ descriptions for these co-
ordinations, because these descriptions are carefully crafted
and explained to the audience, thus preserving authors’
intent and intuitively presenting coordinations with a rich
trove of details, e.g., purposes, tasks, and realizations.

Consequently, the survey involves 45 papers, 1 com-
mercial visualization system, 6 visualization tools, and 31
visual analytics systems, arriving at a corpus of 176 co-
ordination techniques. All these materials are available at
https://nebula-vis.github.io/survey.

4.2 Data Analysis
To gauge an appropriate abstraction level, we first observe
the description of coordinations by visualization researchers
in the survey and the reasonable abstraction of these de-
scriptions. Importantly, we find researchers tend to describe

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 4

the coordination by demonstration, i.e., depicting the users’
interactions in some views and the corresponding updates
of other views. For example, Satyanarayan et al. [4] de-
scribed coordinations in Vega-Lite using the sentences, such
as “selections in one view can also be used to filter input data
to another view” and “panning/zooming the bound interval
selection in the first view also updates the second view”. In ad-
dition, although not directly characterizing the coordination
dataflow graphs, these descriptions maintain the rationality
of these dataflow graphs. Therefore, based on the analysis
of the authors’ descriptions by demonstration, we model
the abstraction of coordination into the following three parts
(Fig. 4(A)):
� User-triggered interactions—interactions that are directly

performed by users.
� Coordination-triggered interactions—“virtual” interac-

tions performed in coordinated views that cause content
updates in response to user-triggered interactions.
� Data transformations—transformations that manage the

potential inconsistency of the backing data between the
user- and coordination-triggered interactions.

In the above examples, “selection in one view” and “pan-
ning/zooming the first view” are user-triggered interactions,
while “filter input data to another view” and “updates the second
view” are coordination-triggered interactions.

To effectively investigate and summarize the user- and
the coordination-triggered interactions, we divide them into
seven categories (Fig. 4(B)), which were initially drawn from
the interaction taxonomy of Yi et al. [33] and refined in
the context of coordination during the survey. The seven
categories are described as follows.
� Select specifies some elements of interest (e.g., data items

and intervals) by actions such as clicking and brushing.
� Filter alters the exclusion criteria for visual elements.
� Navigate alters the viewpoint and scales of visualization

by actions such as panning, zooming, and rotating.
� Encode pertains to changing the fundamental visual rep-

resentation (e.g., color, size, and shape) of the data.
� Reconfigure changes the spatial arrangement (e.g., sorting,

adjusting baselines) of visualizations.
� Set is frequently used in coordination to operate view

configuration (e.g., replace the dataset, operate the control
widgets, such as slider, and modify the text of title/axis).
� Append appends new data to the visualization without

overwriting the old one. Such interaction is especially
useful in coordinations related to streaming data.
Compared with the original taxonomy, Select, Filter, En-

code, and Reconfigure are retained. In addition, Navigate is
derived by merging Explore and Abstract/Elaborate due to
their similarity in navigating to different data perspectives.
Next, Connect is removed because it is usually used in
multiple views and can be replaced by the composition
of other interactions. Finally, two unique interactions in
coordination (i.e., Set and Append) are observed and added
to the categories. It is noted that these categories are summa-
rized following the literature survey and may be adjusted to
better fit the coordination context in the future. For example,
Append currently focuses on streaming data and may be
extended to general interactive scenarios.

Two of the authors individually coded all the collected
coordinations and resolved the disagreements by discussing

select
set

navigate
filter

reconfigure
append

1

count

54

se
lect se

t

navig
ate

filte
r

reco
nfig

ure

append
enco

de

coordination-triggered
user-triggered

select
set

navigate
filter

reconfigure
append
encode

203
82

35
30

10
9
4

0 50 100 150 200

41 54 11 15 7
3

3

1 1
2

8
1

1
2 1

7A B

Fig. 3. Statistics of the corpus of 176 coordination techniques. (A) The
frequency distribution of interactions in coordination. (B) The frequency
distribution of one-to-one interaction compositions in coordination. The
y- and x-axes respectively represent the user- and the coordination-
triggered sides.

and refining the coordination abstraction iteratively.

4.3 Findings
Based on our survey, we compute a series of summary statis-
tics to gain an overview of the coordination usage. Fig. 3(A)
shows the frequency of each interaction in coordination.
The 176 coordinations contain a total of 373 interactions.
Among these interactions, Select is the most frequently used
interaction technique in coordination (203/373). Another
commonly used interaction is Set (82/373), while others are
less than 10%. The distribution is reasonable, as coordina-
tions are realized based on dataflow graphs while Select and
Set provide direct means to manipulate data. In addition,
Select is mainly used on the user-triggered side (151/203),
while the others mainly occur on the coordination-triggered
side. After investigating the examples, we find Select is
mostly used by users for searching a data subset of interest,
followed by the further exploration on the subset in other
views with various interactions.

Furthermore, we study the composition of these in-
teractions considering pairing the user- and coordination-
triggered interactions. In total, 26 composition types are
identified from the 176 coordinations, including 16 one-to-
one (one user- and another coordination-triggered interac-
tion) and 10 complex (at least two interactions on either
user- or coordination-triggered side) types. Specifically, 16
one-to-one types appear 158 times (89.8%), while 10 com-
plex types only appeared 18 times (10.2%). As expected, sim-
ple compositions are more common in coordination, while
complex compositions may be designed for specific scenar-
ios. Fig. 3(B) presents the frequency distribution of these
one-to-one compositions, where Select → Set (54/158) and
Select → Select (41/158) are the top two popular composi-
tions, followed by Select→ Filter (15/158), Select→ Navigate
(11/158), Navigate → Navigate (8/158), Select → Reconfigure
(7/158), and Select → Append (7/158). This distribution
is consistent with the statistics on individual interactions,
where Select and Set are dominant in coordination.

Then, we examine the backing data transformations be-
tween the pairs of user- and coordination-triggered inter-
actions. Although data transformations may not be directly
elaborated, we infer the implementation from the descrip-
tions of coordination and the experience of authoring visu-
alization. For example, a coordination in a scatterplot matrix

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 5

AppendReconfigureNavigate

SetEncode

a b

FilterSelectInteraction
View #1

dataset selection
...scalescolor

User-trigger

Select Navigate ...

View #2
dataset selection

...scalescolor

Coordination-trigger

Select Navigate ...

Data
Transformations

Coordinations
A B

Fig. 4. Overview of our novel coordination framework. (A) The coordination is abstracted by demonstration and formally modeled as a composition
of user- and coordination-triggered interactions above the views in the traditional model, along with potential data transformations. (B) Interactions
are further divided into seven categories and control the visual representations of views based on the data and states.

aims to highlight the intersection of points selected in two
views (Fig. 5(D). Realizing the coordination requires a data
transformation that computes the intersection of the two sets
of points selected by their respective views. Consequently,
we find that 82 out of the 176 coordinations involve at least
one data transformation (46.6%). These data transformations
are diverse for various purposes (e.g., mining features of
a dataset, joining two data tables, and maintaining the
consistency between two data structures).

Finally, we investigate the coordination structures, i.e.,
the composition of these interactions and data transforma-
tions. We found that most of these coordinations are asym-
metric (163/176). That is, the coordination arising from the
user-triggered interactions in view A to the coordination-
triggered interactions in another view B is different from
that from view B to A if it exists. The result is consistent with
most multiple-view systems, wherein different views carry
out different tasks, and the coordination links these views
based on a specific workflow of the system. Meanwhile,
we found a rare but special coordination structure from the
remaining 13 coordinations, which are symmetric. Typical
examples include scatterplot matrix and small multiples,
in which multiple views present the same type of visual-
izations. The symmetric structure motivates a method to
rapidly specify coordination between views.

5 COORDINATION FRAMEWORK

Informed by our survey and the analysis in Section 4.2, we
propose a novel demonstration-driven coordination frame-
work illustrated in Fig. 4(A). The framework abstracts co-
ordination by demonstration, namely, how coordination is
performed by users. Thus, the coordination in MCVs can
be formalized as a composition of user- and coordination-
triggered interactions, along with potential data transfor-
mations. To maintain the rationality of the underlying struc-
ture, the abstraction is based on the coordination dataflow
graph [7], which encapsulates the data and states of views
into interactions (node) and manages data transmission and
transformation between interactions (link).

Based on the summary statistics of the corpus in Section
4.3, we first elaborate two basic components in coordina-
tion, i.e., seven categories of interactions (Fig. 4(B)) and
data transformations in Section 5.1. We then discuss the
composition of these components in Section 5.2. Finally, we
generalize the coordination structures in terms of various
compositions of interactions and data transformations in
Section 5.3.

5.1 Coordination Components

5.1.1 Interactions in Coordination

To construct the coordination dataflow graph, interactions
are usually associated with the backing data and states
of views. Thus, interacting with views will modify these
data and states. Coordination connects these data and states
to propagate interaction responses between views. These
data and states are called targets of interactions, which are
elaborated following the taxonomy of interactions in Section
4.2 (Fig. 4(B)).

Select. The targets of Select are the selected elements,
which include two types: items (Fig. 6(A)) and intervals
(Fig. 6(C)). The selected items refer to single or multiple data
records in views (e.g., points in scatterplots, nodes and links
in graphs) and are usually stored in arrays. The selected
intervals are similar to the intervals of Vega-Lite [4], which
specify a range of data (e.g., brushing a period of time or
lassoing a geospatial area).

Filter. Unlike Select, the targets of Filter are the elements
that users intend to discard (Fig. 6(B)) but possess the same
types: items and intervals.

Navigate. Navigate alters the viewpoint and the scales of
visualization. The targets can be one-dimensional or multi-
dimensional scales. For example, scrolling a document up
and down is a one-dimensional Navigate interaction because
it only alters the page number. Typical two-dimensional
Navigate interactions include panning and zooming in maps
(Fig. 7(B)). Both interactions modify the scales of the x and
the y dimensions of the map, which are usually stored in
two variables (e.g., intervals of the longitude and latitude,
positions of the upper-left and the lower-right points, the
position of the focal points, and the zoom level).

Encode. The targets of Encode indicate the visual chan-
nels (e.g., position, color, and size). Encode is usually per-
formed to modify visual channels or their properties via
control widgets. For example, users can interact with a
control slider whose value encodes the size of the points
to change the size (Fig. 8). These targets are usually stored
as a value of an object.

Reconfigure. The targets of Reconfigure describe the
spatial arrangement of data in the canvas. For example,
LineUp [34], a multi-attribute ranking visualization tailored
from stacked bar charts, enables users to adjust the column
(attribute) order by dragging and dropping the column
headers (Fig. 9). Such interactions modify the spatial po-
sitions of attributes to reconfigure the visualization.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 6

Set. The targets of Set are view configurations, which are
usually modified through control widgets (e.g., select, input,
and text). For example, users can select to import new data
and change the parameters of algorithms via the select and
input widgets (Fig. 10).

Append. Append focuses on streaming data and updates
the visualization with new data based on the existing encod-
ing mechanism. The target of Append is the newly-generated
data to be added to the visualization (Fig. 10).

5.1.2 Data Transformations
Data transformation is required in coordination in the pres-
ence of inconsistency between the backing data of user- and
coordination-triggered interactions in views. The inconsis-
tency may originate from the following various reasons: dif-
ferent interactions (e.g., Select and Navigate), types of views
(e.g., Select in scatterplots and node-link graphs), or underly-
ing implementations (e.g., Select in D3 [2] and Vega-Lite [4])
at both ends of links in the coordination dataflow graph.
Moreover, the inconsistency can be caused by visualizing
different datasets in these views. For example, two views
may visualize two related data tables (e.g., information of
employees and their companies) and are coordinated in
an MCV system for association analysis. Moreover, users
can specify data in one view and visualize their patterns
in another view after applying mining algorithms, thus
requiring the data transformation between the two views for
extracting features. To support these scenarios, we leverage
data transformations to connect interactions. Specifically,
these transformations handle the inconsistency between in-
teractions and transmit data from the user-trigger interac-
tions to the coordinated views; examples include mapping
the selected points in scatterplots to the nodes in node-
link graphs, formatting different data structures, joining two
related data tables, and leveraging mining algorithms.

5.2 Component Compositions

The basic compositions comprise one user-triggered in-
teraction in one view and one coordination-triggered
interaction in another view, along with potential data
transformations between the two interactions. We denote
this one-to-one type of composition as interaction →
(transformation) → interaction. Therefore, the universal
set covering all compositions can be a 7 × 7 matrix. Since
our goal is to reveal the mechanism of the component
composition and inform the understanding of coordination,
we discuss the representative one-to-one compositions with
high frequency in the survey (Fig. 3(B)). The discussion is
organized from the interactions triggered by users.

Select→ ∗. Select is the most widely used user-triggered
interaction, which allows specifying a subset of data as
a step toward further analysis. In our survey, Select can
trigger six categories of interactions, except Encode in the
coordinated views. Specifically, the selection can be used to
highlight the related data (Select → Select in Fig. 1) or filter
the unrelated data (Select → Filter in Fig. 6(B)) in another
view. These coordinations may involve data transforma-
tion to handle data transmission. For example, visualizing
two datasets in two views may require a join operation
on the two datasets to find associations. Moreover, the

selected data can be set as the input dataset in another view
(Select → Set in Fig. 6(A)). This process can involve mining
algorithms in data transformation to discover features of
selection. For example, users select data in one view which
are then computed through a clustering algorithm, and the
clustered results are set as the input data in coordinated
views for further analysis. Another common coordination is
Select → Navigate, in which the selection is used to guide
the navigation. A typical scenario is hierarchical browsing,
wherein overview provides a global map, and selection
in overview will navigate to the corresponding area for
details (Fig. 7(A)). This composition usually requires a data
transformation to extract the navigation information from
the selection. One exception is that the target of Select is
interval, which may directly serve as the input of Navigate
(Fig. 6(C)). Select→ Reconfigure is usually used to rearrange
the data in a view based on the selection in another view
through a specific data transformation to extract the spatial
arrangement from the selection. An example is the user-
guided matrix reordering [35], where the selected data in
the scatterplot will be arranged in adjacent orders in the
matrix based on a reordering algorithm. Select → Append
appends the new selection instead of overwriting the old
for further exploration and comparison, which is used in
the decision-making of alternatives [36].

Set → ∗. Since Set is mainly used to configure views,
it rarely triggers coordination. In our survey, Set commonly
works with itself (Set → Set) to update the input dataset in
the coordinated view in correspondence to the dataset set by
users in the origin view. Another case is Set → Reconfigure.
For example, a bar chart visualizes attribute weights of a
data table, where changing the length of bars modifies the
attribute weights and thus sorts the table [37].

Navigate → ∗. The target of Navigate is the scales of
visualizations, which means that Navigate-triggered coor-
dinations mainly focus on the scales or internal data in
coordinated views. For the former, one common example
is Navigate → Navigate, where the scales are shared in
coordinated views to maintain synchronicity with the view
in which users pan and zoom (Fig. 7(B)). This composition
is commonly used in multifaceted analysis, which visualizes
the same dataset in multiple views, such as the scatter-
plot matrix and small multiples. For the latter, one case is
Navigate → Select/Filter, where the data in the navigated
area in a view will be highlighted/filtered in another view
(Fig. 7(C)). This composition is widely used in the bottom-
up analysis. For example, in a large network, the nodes and
links in the navigated area showing the details of its struc-
ture are highlighted/filtered in the overview heatmap [38].

Filter → ∗. Filter-triggered coordinations are usually
used to discard uninteresting elements in multiple views to
maintain their consistency, or discover patterns of these ele-
ments. For the former scenario, the filtered elements trigger
the corresponding filtering of the corresponding elements
in other views (Filter → Filter). The latter one involves the
Filter → Append coordination, where the elements filtered
by users are continuously appended to a view [39] to reveal
users’ implicit preference.

Encode → ∗. Encode focuses on visual channels. There-
fore, it is mainly composed with itself (Encode → Encode) to
keep multiple views consistent in the visual encoding (e.g.,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 7

the same point size of scatterplots in Fig. 8).
Reconfigure → ∗. Reconfigure specifies the spatial ar-

rangements of interest, which can be used in the subsequent
analysis to discover valuable information masked behind
them. For example, reordering usually contains implied user
preference, which can be applied to infer and highlight the
data of interest (Reconfigure→ Select) [35] and compute and
visualize the weights of dimensions (Reconfigure→ Set) [37]
supported by data transformations. Moreover, despite the
absence of examples of Reconfigure → Reconfigure in our
survey, the coordination can be useful to keep consistency
in spatial arrangements between multiple views (e.g., the
attribute order between stacked bar chart and LineUp [34]
in Fig. 9).

Append → ∗. The survey does not find instances that
use Append as the user-triggered interaction. However, we
assume that Append can at least trigger itself (Append →
Append) to input streaming data in multiple views.

5.3 Coordination Structures

Based on the basic components and their compositions, we
elaborate two types of coordination structures found in our
literature review: asymmetric and symmetric structures.

Asymmetric Structure is a unidirectional coordination
structure, in which all links between interactions and data
transformations are unidirectional. This structure is a su-
perset of one-to-one interaction composition and is ex-
tended to a larger scope including one-to-many, many-to-
one, and many-to-many structures. The one-to-many struc-
ture can be defined as interaction→ (transformation)→
interactions, which means that a user-triggered interaction
can cause multiple coordination-triggered interactions. A
typical example is that an interaction performed in the
overview view of a visual analytics system can elicit mul-
tiple coordination-triggered interactions in detailed views
and cause updates simultaneously. The many-to-one struc-
ture can be defined as interactions → transformation →
interaction, which means users should perform multiple
interactions to cause a coordination-triggered interaction.
The process must involve data transformations that receive
multiple inputs from user-triggered interactions and trans-
form into one output to the coordinated view (e.g., Fig. 10).
The many-to-many structure is defined as interactions →
transformation → interactions, which can be a compo-
sition of one-to-many and many-to-one structures. In ad-
dition, all these aforementioned unidirectional asymmetric
structures can be further nested and composed to generate
complex structures.

Symmetric Structure is a special directed complete
graph structure in coordination. All interactions are iden-
tical in this structure, and each pair of interactions is con-
nected by a bidirectional link. Thus, this structure can be
regarded as symmetric because interactions can trigger or
be triggered by others. Such coordination is widely used in
the scatterplot matrix and small multiples that visualize one
dataset in multiple views in the same visualization type and
allow comparison and discovery of associations between
data dimensions or subsets. For example, the scatterplot
matrix in Fig. 1 encodes each pair of dimensions in x and
y channels. The selecting and highlighting coordination are

TABLE 1
Synonym list for interactions in Nebula.

Type Synonyms
select highlight
navigate pan, zoom, scroll
reconfigure rearrange, arrange, organize, sort, align
set modify, change, replace
append add

symmetric, in which selecting points in any scatterplot can
highlight the corresponding selections in other scatterplots.

6 NEBULA

In this section, we introduce Nebula, a coordinating gram-
mar with a generalized MCV architecture. The Nebula
grammar is motivated by two goals: (1) expressiveness: to
enable expressive specification of various coordinations and
(2) usability: to do so with concise and accessible primitives
to facilitate efficient coordination specification. To achieve
the goals, Nebula is grounded in the demonstration-driven
coordination framework and provides a natural language
grammar based on structured templates. Moreover, the Neb-
ula architecture reduces the technical burden to integrate
external toolkits; thus users can coordinate visualizations
from different toolkits using the Nebula grammar. Fig. 5
illustrates the grammar, architecture, and workflow.

6.1 Grammar
A Nebula specification is a natural language (NL) sentence
based on structured templates, which describe coordination
by demonstration. Informed by our coordination frame-
work, the specification is a three-tuple:

coordination := (origin, transformation, destination)

The origin and destination components describe the user-
and coordination-triggered interactions, respectively, while
the transformation component describes the potential data
transformations between origin and destination. We explain
each component in detail.

6.1.1 Origin
The origin component specifies the users’ interactions in the
view and is defined as a three-tuple structured template:

〈origin〉 → 〈type〉 〈target〉 in 〈view〉

The type field identifies the interaction type from the seven
interaction categories, and the target field specifies the target
manipulated by the interaction (Section 5.1.1). The view field
defines which view is interacted with. Examples of these
specifications include “select items in scatterplot1” (Fig. 6(A))
and “navigate scales in map” (Fig. 7(B)).

To support the flexible creation of coordination, Nebula
provides synonyms for users to specify the interaction type.
Table 1 shows a synonym list that Nebula supports for each
interaction category. For example, using Pan, Zoom, or Scroll
to replace Navigate further specifies the interaction represen-
tations and presents an intuitive statement to users. These
synonyms are summarized based on common colloquial de-
scriptions of coordination in our literature review. It is noted

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 8

A. Grammar

" Select items in scatterplot1 and scatterplot2,
 then intersect, then highlight items in scatterplot3."

1
2 3

parse

Destination
select items in scatterplot3 with $1
type target view parameter

Transformation
intersect with $1 and $2

name parameter

Origin
select items in scatterplot1
select items in scatterplot2
type target view

B. Views and Data Transformations

search

link

render

...

Original View #1
dataset selection

...scalescolor

Rendering
API

Interaction
API

Reactive Layer @ View

Streaming Data 1

 type :
 target :
 values :

select
items
[...]

Streaming Data 2

 type :
 target :
 values :

navigate
scales
[...]

...

...

...

...

...

filter

merge

subset

intersect Reactive Layer @ Transformation

Transformation #1

Streaming
Parameters

values : [...]

Streaming
Results

values : [...]C. Coordination

#1 #2

#2#1 #3

intersect

3
1

1

before after

11

2

3

D. MCVs

Fig. 5. Nebula architecture and workflow. (A) Original Nebula specifications are segmented and parsed, where tokens are labeled in color, missing
fields are completed, and synonyms are replaced. (B) Views and data transformations are searched, and streaming data are located according to
the tokens in the specifications. (C) Streaming data are linked between views and data transformations to construct coordinations. (D) MCVs are
finally rendered and can receive users’ interactions.

that these synonyms are only for an intuitive manner to
specify coordination and have no substantial difference. All
these synonyms will be parsed into the original interaction
category at runtime, which also means that extending the
list is easy and inexpensive.

6.1.2 Transformation

The transformation specification consists of a three-tuple
structured template to handle the condition if data from
origin and destination discord:

〈transform〉 → when 〈trigger〉, 〈name〉with 〈parameter〉

The trigger field is optional and defines a conditional state-
ment when the data transformation would be executed (e.g.,
click a button). The name field registers the name of the
data transformation in Nebula, such as intersection and k-
means. The parameters field specifies the data sources of the
transformation based on an ordered assignment rule, which
are mainly from pre-loaded datasets, literal constants, and
interactions in origin. For example, in Fig. 5(A), “intersect

with $1 and $2” calls a built-in data transformation inter-
sect(set1, set2) with the parameters set1 = $1 and set2 = $2.
Particularly, Nebula incorporates the “$” keyword to map
the data from origin interactions via their order number. The
idea is borrowed from Shell, a concise scripting language
in Unix/Linux systems that codes parameters with default
rules. Therefore, in this example, “$1” corresponds to the
first interaction in origin, namely “select items in scatterplot1”.
Similarly, “$2” denotes the second interaction, namely “se-
lect items in scatterplot2”. Moreover, to alleviate the technical
burden and produce a readable sentence, users need not
specify parameters in Nebula (Fig. 5(A-2)), and the Nebula
parser will auto-complete the parameter specification (e.g.,
“$1 and $2” in the above example).

6.1.3 Destination

The destination component describes the interactions trig-
gered by coordination and is defined in a four-tuple form:

〈destination〉 → 〈type〉 〈target〉 in 〈view〉with 〈parameter〉

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 9

The type, target, and view fields are the same as those in
origin. The parameter field is similar to transformation, which
specifies the parameter to trigger this interaction. Particu-
larly, users can use “$” plus order number to specify the
results of the previous component in parameters. The rules
are that if data transformation exists, then “$” corresponds
to the output of the data transformation; otherwise, it maps
the data from origin interactions. For example, in Fig. 5(A),
“$1” in destination refers to the output of the data transfor-
mation intersect, which means that the intersected items will
be highlighted in scatterplot3. For convenience, “$1” is set
as the parameter by default.

6.1.4 Walkthrough
To demonstrate the cooperation of the three components
(i.e., origin, transformation, and destination), Fig. 5 presents
an example of a walkthrough to the entire process from
the grammar specification to the coordination workflow.
In this example, the points in scatterplot3 will be high-
lighted if they fall within both selections of scatterplot1
and scatterplot2. First, to compose a complete coordina-
tion specification, Nebula provides the keyword “then” to
connect the three components (Fig. 5(A)). Then, Nebula
segments and parses this specification. Each token is labeled
in color, missing fields are auto-completed, and synonyms
are replaced following Table 1. Specifically, the specification
“select items in scatterplot1 and scatterplot2” in origin is parsed
as two individual interaction specifications. The parameters
of the data transformation intersect are completed following
the default rule. The parameter in destination is also auto-
completed, while the synonym Highlight is replaced by
Select. As a result, an asymmetric two-to-one coordination
structure with a data transformation is constructed, which
will be rendered in subsequent steps (Fig. 5(B–D)).

In addition, to support rapid creation of symmetric
coordination (Section 5.3), Nebula provides pronouns any
and other as syntactic sugar referring to a set of views. For
example, in Fig. 1, any refers to any scatterplot in the scatter-
plot matrix, while other refers to the remaining scatterplots.
Such coordination specification allows users to select points
in any scatterplot, and the corresponding points in other
scatterplots will be highlighted.

6.2 Architecture

To coordinate the visualizations from external toolkits, Neb-
ula combines the Model-View-ViewModel (MVVM) software
architectural pattern and the streaming dataflow architec-
ture [3], decoupling coordination construction from interac-
tive visualization design with reactive layers.

A reactive layer (Fig. 5(B)) serves as a tailored view
model connecting a view or a data transformation with
the streaming data (as the models in MVVM), which can
be communicated with other views and data transforma-
tions. In the reactive layer that encapsulates a view, each
interaction is modeled as a streaming datum identified by
its type chosen from seven interaction categories and its
target data field. When an interaction is received, the value
of the corresponding streaming datum will be modified.
Moreover, changing the values of a streaming datum is
equivalent to triggering the corresponding interaction and

updating the encapsulated view. For example, streaming
data 1 in Fig. 5(B) represents the Select interaction. The items
selected by users will be stored in the value of streaming
data 1. Conversely, modifying the value of streaming data
1 will highlight the corresponding items in view as if
they were selected. Such architecture allows the integra-
tion of Nebula with other libraries easily by reusing their
application programming interfaces (APIs). For example,
view.addDataListener in Vega-Lite can be used to mod-
ify the streaming data upon interactions, and view.data
and view.runAsync help update the views upon changes
in the streaming data. Reusing the existing APIs facilitates
efficient adaption and provides compatibility with the views
from external toolkits. Similarly, the parameters and results
of data transformations can also be modeled as streaming
data to establish reactivity.

Thereafter, coordinations can be described as the stream-
ing dataflow graphs constructed by parsing Nebula spec-
ifications and connecting the streaming data in the re-
active layers of different views and data transformations
(Fig. 5(C)). The links between the streaming data propagate
data mutations, maintaining the synchronization of inter-
action responses between the views to establish coordina-
tion. Moreover, these links enable data transformations to
directly process interaction data and control view rendering.

Nebula users can conveniently create MCVs based on
such architecture. First, users can author visualizations with
different libraries (e.g., D3, Vega, and Vega-Lite) and arrange
these visualizations in a desired layout. Next, the reactive
layers that encapsulate the visualizations and data transfor-
mations are created conveniently with the APIs of Nebula.
For the data transformations that are not programmed in
JavaScript, Nebula provides a browser/server API to allow
these data transformations to receive and send stream-
ing data, including parameters and results, asynchronously
based on HTTP. Finally, users can specify coordinations with
the Nebula grammar and implement MCVs based on the
encapsulated visualizations and data transformations.

7 PROOF-OF-CONCEPT IMPLEMENTATION

Nebula is an open-source toolkit implemented in JavaScript
and is available at https://nebula-vis.github.io/. The toolkit
comprises three major parts: parser, integrator, and gener-
ator. The parser implements Fig. 5(A) and can parse the
Nebula specifications. The integrator implements Fig. 5(B)
and provides APIs to encapsulate reactive layers for views
and data transformations, leveraging their existing APIs.
Finally, the generator links streaming data in reactive layers
and renders MCVs (Fig. 5(C) and (D)) based on the results
of the parser and the integrator.

8 EVALUATION

Nebula aims to balance expressiveness and usability to coor-
dinate visualizations. This section demonstrates the realiza-
tion of the goal. To evaluate expressiveness, we showcase a
variety of examples that cover our coordination framework.
To assess usability, we analyze Nebula using the Cognitive
Dimensions of Notation framework [5].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 10

" Select intervals in scatterplot1,
 then navigate scales in scatterplot2."

1
2

" Select items in scatterplot1,
 then filter items in scatterplot2."

1
2

" Select items in scatterplot1,
 then set dataset in scatterplot2."

1
2

2

2

2

1 11

A

before

after

before

after

before

after

B C

Fig. 6. Examples of Select→ ∗ coordinations in two scatterplots, where the selection of the first scatterplot will (A) modify the dataset, (B) be filtered
out from the dataset, and (C) cause the navigation to the area in the second scatterplot.

" Navigate scales in map,
 then scales2items,
 then select items in scatterplot."

1
2
3

1

3

2

" Navigate scales in map,
 then navigate scales in scatterplot."

1
2

1 2

" Select items in scatterplot,
 then item2scales,
 then navigate scales in map."

1
2
3

1

3

2

A CB

before

after

before

after

before

after

Fig. 7. Examples of Navigate-related coordinations in a scatterplot and a map. (A) An example of Select → Navigate coordination, where the
map will be navigated to the area according to the selected points in the scatterplot. (B) An example of Navigate → Navigate coordination, where
panning and zooming in the map will cause the corresponding panning and zooming in the scatterplot. (C) An example of Navigate → Select
coordination, where the points in the scatterplot will be highlighted if they fall in the area navigated in map.

8.1 Examples

To demonstrate the expressiveness of Nebula, we present a
selected gallery of common and typical coordination exam-
ples based on our literature review.

Figs. 6–10 cover all seven categories of interactions in
Nebula. Specifically, Fig. 6 presents the composition of Select
with different interactions (Set, Filter, and Navigate) to han-
dle various coordinating tasks. Fig. 7 illustrates a set of Navi-
gated-related coordinations. Figs. 8 and 9 showcase examples
with Encode and Reconfigure, respectively. Moreover, Fig. 10
presents a many-to-one coordination structure, where the
data of four Set interactions serve as the parameters of a data
transformation, and the results of the data transformation
are appended to a list view for further comparison and
analysis. Fig. 1 shows a symmetric coordination example.

To demonstrate how multiple coordinations cooperate to

handle complicated visual analytics tasks, we reproduce the
core module of SRVis [40], a real-world MCVs for multidi-
mensional geospatial data (Fig. 11). We select SRVis for its
complexity (most of the coordinations involve at least three
visualizations) and familiarity with the authors of this paper
(three authors participated in its design and development).
The prototype comprises six visualizations: a map showing
the geospatial details, a LineUp [34] ranking multidimen-
sional data, and four histograms around the map showing
the multidimensional statistical distribution along the lati-
tude and longitude. We specify five coordinations to mine
patterns between geospatial and multidimensional features.
Specifically, the points of interest selected in the map are
fed to the datasets of the four histograms to discover their
distributions and also highlighted in the LineUp to show
their details of dimensions (Fig. 11(A)). In addition, the
x scales of the map, encoding the longitude of the data,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 11

" Encode size in scatterplot1,
 then encode size in scatterplot2."

1
2 1 10

2.53

1 10

6.59

2
1

A B

before after

Fig. 8. Example of Encode→ Encode coordination, where modifying the value of the slider will change the point size in both scatterplots.

" Reconfigure order in lineup,
 then reconfigure order in stacked-barchart."

1
2

2

2

1

A B

before after

Fig. 9. Example of Reconfigure → Reconfigure coordination, where modifying the attribute order of the dataset in LineUp [34] by dragging and
dropping will also modify the stacking order of attributes in the stacked bar chart.

PCA + k-means

PCA + DBSCAN

PCA + MeanShift
run

parameters
{
 "n_clusters": 4,
 "n_components": 2
}

reduction

PCA
PCA

TSNE
LLE

clustering

k-means
k-means

DBSCAN
MeanShift

2 3

4

55 5

6

6

6
" Set dataset in scatterplot1,
 set value in select-reduction,
 set value in select-clustering,
 set value in input-parameters,
 then when button clicked, reduction_cluster,
 then append dataset in list-view."

1
2
3
4
5
6

Fig. 10. Example of Set → Append coordination, where the dataset visualized in the scatterplot will be clustered using different reduction and
clustering algorithms and various parameters to compare their performances. The results are appended in a list view, where each result is visualized
in a scatterplot. A button is set as the trigger to control the execution of the coordination.

are bound up with the top and the bottom histograms
(Fig. 11(B)), similar for the y scales (latitude) of the map with
the left and the right histograms (Fig. 11(C)). Moreover, the
visible points in this navigated area serve as the dataset of
the LineUp to present their details (Fig. 11(D)). Therefore,
navigating the viewpoint in the map will update all other
views and synchronize their data accordingly (Fig. 11(B),
(C), and (D)). Finally, to support a consistent analysis on
data dimensions, reconfiguring the orders in the LineUp will
update those in the stacked histograms (Fig. 11(E)).

8.2 Cognitive Dimensions of Notation

Based on our survey and framework, we design Nebula to
integrate coordination notations and specifications, consid-
ering users’ mental model. To assess the design intuition
and usability of Nebula, we conduct an analysis using the
Cognitive Dimensions of Notation framework [5], which is
a widely adopted method in the visualization community
to evaluate toolkits and systems, such as Protovis [27],
Vega [32], PGoG [30], and Lyra 2 [24]. The framework
provides a heuristic inspection method with 14 cognitive
dimensions to assess the effectiveness of notation sys-
tems (e.g., programming languages and visual interfaces)
from different perspectives. These dimensions describe the
generic properties of notation by names, such as closeness
of mapping (closeness of representation to domain) and hidden

dependencies (the visibility of relationships), inspiring designers
to consider the nature of notation from the perspective of
cognitive psychology without evaluating the entire system.

Below, we briefly discuss the performance of Nebula
using a relevant subset (9/14) of the above cognitive dimen-
sions [5]. Due to the lack of visualization tools dedicated
to coordination, we do not directly compare Nebula with
other tools. Instead, we elaborate the distinctions between
the traditional mechanism of existing tools for constructing
coordination (i.e., configuring interactions and composing
visualization building blocks) and the mechanism of Nebula
(i.e., composing seven categories of interactions). The rest of
the dimensions is beyond the goal of Nebula and will be
considered in future work.

Closeness of mapping (closeness of representation to domain).
Nebula is motivated by the need for a close mapping be-
tween coordination and its specification. We analyze how
authors describe the coordination and design the notations
correspondingly. As such, the design allows users to easily
construct coordination in a similar way they describe coor-
dination. Using this grammar, users can focus on the coordi-
nation design, including choosing interactions or adjusting
data transformations, rather than getting lost in tedious
configurations of basic visualization and interaction details.

Hidden dependencies (important links between entities are
not visible). Nebula provides the parameter fields in trans-
formation and destination specifications that explicitly reveal

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 12

" Select items in map, then set data in histogram1, histogram2, stacked-barchart1, stacked-barchart2, and highlight items in lineup."
" Navigate scales in map, then xyscales2x, then navigate xscales in histogram1 and stacked-barchart1."
" Navigate scales in map, then xyscales2y, then navigate yscales in histogram2 and stacked-barchart2."
" Navigate scales in map, then scales2items, then set data in lineup."
" Reconfigure order in lineup, then reconfigure order in stacked-barchart1, stacked-barchart2."

A
B
C
D
E

A-1

A-1

B-1
C-1

C-1

D-1

D-1

E-1

E-1

E-2

E-2
E-1

D-2

D-2

C-2

C-2

B-2
A-2

A-1

A-2

A-2

A-2

A-2

A-2

A-2

A EB
C
D

before

after

before

after

before

after

B-1

B-2

B-2

C-2

Fig. 11. Reproduction of the core module of SRVis [40] with six visualizations, i.e., a map, four histograms, and a LineUp [34]. The core module
consists of five coordinations. Specifically, (A) selecting data of interest in the map will modify the dataset of the four histograms to present the
statistical distributions of the selection along the longitude and latitude. The selection is also highlighted in the LineUp to show the details of
dimensions. Panning and zooming in the map will modify (B) the scales of x (longitude) in the top and bottom histograms and (C) the scales of y
(latitude) in the left and right histograms with a data transformation to transform 2D scales to 1D. (D) When panning and zooming, the visible data
in the map are extracted by a data transformation and fed into the LineUp to maintain consistency of their datasets. (E) Rearranging the order of
dimensions in the LineUp will update that in the stacked histograms to maintain consistency of their orders.

the dependencies between interactions and data transfor-
mations. By contrast, the existing approach to composing
visualization and interaction configurations does not model
coordination as a first-class primitive, thus requiring users
to manually search through other primitives (e.g., encoding,
selection, and transform) to build such dependencies.

Viscosity (resistance to change) and consistency (similar se-
mantics are expressed in similar syntactic forms). The viscosity
indicates the amount of efforts required to change a coor-
dination to another. Nebula avoids high viscosity via struc-
tured templates, which enable the independent changes in
interactions and data transformations to construct different
coordinations. These templates also shorten the edit distance
of coordination variations by reusing the semantics of simi-
lar coordination, thus facilitating consistency.

Role-expressiveness (the purpose of a component is readily
inferred) and visibility (ability to view components easily). Neb-
ula provides concise and consistent structured templates
to enable precise identification of each component of in-
teraction and data transformation specifications. Moreover,
uniform interaction types assist users to infer interaction
semantics with a synonym list. Finally, all these components
are collected and aggregated in a natural language sentence
to facilitate the viewing.

Hard mental operations (high demand on cognitive resources).
Nebula may require less mental effort to adapt to their
interaction primitives, which directly surface interaction
semantics and goals. Data transformation is an exception.
Specifying data transformation in Nebula is as hard a mental
operation as that in traditional coordination mechanisms. A
simplified method is desired in the future.

Diffuseness (verbosity of language). Nebula is concise due
to its simple primitives and concise templates. In addition,
the Nebula architecture provides a unified layer to reuse the
existing APIs of the toolkits to reduce the technical burden.

Abstraction (types and availability of abstraction mechanism).
The abstraction of Nebula is discussed in Section 4.2, and the
coordination is abstracted by demonstration. Specifically,
the basic interaction configurations and visualization blocks
are abstracted into seven categories of interactions. The
dependencies between these configurations and blocks are
abstracted into the interaction compositions. Such abstrac-
tion is familiar to visualization practitioners and lower the
threshold to formalize coordinations.

In summary, Nebula performs well in most of these
dimensions. Note, however, the usability still needs to be
assessed with users in future work. The analysis also indi-
cates future directions to improve Nebula.

9 DISCUSSION

Despite the expressiveness of Nebula for authoring coordi-
nation as demonstrated in the evaluation results, the design
process faces many trade-offs. We discuss the benefits and
limitations of Nebula and present our reflections on devel-
oping coordination tools.

Grammar. The grammar design of Nebula based on
natural language (NL) structured templates is admittedly
modest. The design still requires users’ prior knowledge
and cannot compete with free-form NL sentences in us-
ability. Nevertheless, we highly recognize the strength of
structured templates in systematic enumeration and explo-
ration. Finally, we decide to focus on coordination variation

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 13

exploration and intentionally fix the Nebula grammar to
interpretable structured templates. A potential improve-
ment is to strike a balance between free-form grammar and
systematic enumeration.

This paper mainly aims to contribute an overall ap-
proach to abstract the coordination dataflow graph and
formalize coordination at a high level. Nebula inspect the
coordination from the perspective of demonstration, based
on our observation to users’ general description of coordi-
nation. Apart from demonstration, we believe there exist
other abstractions for coordination, which can be potential
research directions to coordinate multiple views.

Data transformations are essential components in co-
ordinations to resolve data inconsistencies, find data re-
lationships, and extract data patterns. However, directly
accessing and evaluating the details of data transformations
is impossible because the existing papers and systems in
our survey provide limited discussion on their internal
data transformations. Therefore, Nebula provides a set of
common data transformations and allows users to manually
integrate their customized transformations based on the
APIs. Moreover, Nebula does not consider the latency in
data transformations, and human involvement in the trans-
formations is limited to configuring execution parameters.
Therefore, we hope to further investigate and improve data
transformations in coordination in the future work.

Architecture. The Nebula architecture aims to improve
compatibility with various external toolkits. The archi-
tecture that decouples visualization design and coordina-
tion specifications is promising in terms of facilitating the
construction of MCVs by combining Nebula with pow-
erful interactive visualization authoring tools (e.g., Vega-
Lite [4], MyBrush [19], Lyra2 [24]). However, the architec-
ture presents high requirements for developers to construct
reactive layers for visualizations and may hinder its devel-
opment in related ecosystems. Specifically, the architecture
assumes that users are familiar with the components they
want to integrate and requires users to encapsulate the reac-
tive layers manually. An effective approach is to automate
this process by checking and inferring the usage of code.

Beyond Nebula. Up to this point, we have positioned
Nebula as a tool for coordinating views in MCVs. Apart
from this, we hope that Nebula can facilitate the research in
MCVs as a coordination paradigm. First, Nebula can help
explore the design space of coordination. By surfacing coor-
dination variations between visualizations, users can com-
pare and choose among different alternatives. In addition,
the formal paradigm enables users to cluster a large number
of coordinations. The results may promote the development
of advanced design guidelines, recommendation models,
or other coordination practices. Moreover, Nebula can be
applied to not only coordination but also multi-view design
in MCVs. For instance, Encode-related coordinations can be
used to keep visual encoding consistent between views [13].

10 CONCLUSION AND FUTURE WORK

This study introduces a novel demonstration-driven frame-
work of coordination and instantiates the framework in a
natural-language-based grammar named Nebula. Through
a diverse example gallery and an analysis on cognitive

dimensions, we show that Nebula enables expressive speci-
fications of coordinations with potential usability benefits.

Nebula is only the first attempt to efficiently author
coordinations in MCVs, and we will turn to several potential
directions. First, future work should collect and explore
feedback from real-world users and usages. The feedback
can provide insights and guide the improvement of Nebula,
as well as related ecosystems. Besides, enriching coordina-
tion types in Nebula is another next step. Finally, integrating
Nebula and flexible visualization authoring tools is also a
promising direction. It can help users efficiently construct
MCVs by combining individual visualization design and
coordination between them.

ACKNOWLEDGMENTS

We thank all the reviewers for their constructive sugges-
tions and comments. The work was supported by NSFC
(62072400), NSFC (62002331), Zhejiang Provincial Natural
Science Foundation (LR18F020001), and the 100 Talents Pro-
gram of Zhejiang University. The work was also partially
funded by Zhejiang Lab.

REFERENCES

[1] C. North and B. Shneiderman, “A Taxonomy of Multiple Window
Coordinations,” University of Maryland, Department of Com-
puter Science, Tech. Rep., 1997.

[2] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven docu-
ments,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 12, pp. 2301–2309, 2011.

[3] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer, “Reactive
Vega: A Streaming Dataflow Architecture for Declarative Interac-
tive Visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 22, no. 1, pp. 659–668, 2016.

[4] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer,
“Vega-Lite: A Grammar of Interactive Graphics,” IEEE Transactions
on Visualization and Computer Graphics, vol. 23, no. 1, pp. 341–350,
2017.

[5] A. F. Blackwell, C. Britton, A. L. Cox, T. R. G. Green, C. A. Gurr,
G. F. Kadoda, M. Kutar, M. Loomes, C. L. Nehaniv, M. Petre,
C. Roast, C. Roe, A. Wong, and R. M. Young, “Cognitive Di-
mensions of Notations: Design Tools for Cognitive Technology,”
in Proceedings of International Conference on Cognitive Technology:
Instruments of Mind, 2001, pp. 325–341.

[6] E. L. Hutchins, J. D. Hollan, and D. A. Norman, “Direct Manip-
ulation Interfaces,” Human-Computer Interaction, vol. 1, no. 4, pp.
311–338, 1985.

[7] C. Weaver, “Building Highly-Coordinated Visualizations in Im-
provise,” in Proceedings of IEEE Symposium on Information Visual-
ization, 2004, pp. 159–166.

[8] D. Ren, B. Lee, M. Brehmer, and N. H. Riche, “Reflecting on the
Evaluation of Visualization Authoring Systems: Position Paper,”
in IEEE Evaluation and Beyond - Methodological Approaches for Visu-
alization, 2018, pp. 86–92.

[9] J. C. Roberts, “State of the Art: Coordinated & Multiple Views in
Exploratory Visualization,” in Proceedings of International Confer-
ence on Coordinated and Multiple Views in Exploratory Visualization,
2007, pp. 61–71.

[10] ——, “Multiple-View and Multiform Visualization,” in Proceedings
of Visual Data Exploration and Analysis VII, 2000, pp. 176–185.

[11] M. Q. W. Baldonado, A. Woodruff, and A. Kuchinsky, “Guide-
lines for Using Multiple Views in Information Visualization,” in
Proceedings of the Working Conference on Advanced Visual Interfaces,
2000, pp. 110–119.

[12] R. Sadana and J. T. Stasko, “Designing Multiple Coordinated
Visualizations for Tablets,” Computer Graphics Forum, vol. 35, no. 3,
pp. 261–270, 2016.

[13] Z. Qu and J. Hullman, “Keeping Multiple Views Consistent: Con-
straints, Validations, and Exceptions in Visualization Authoring,”
IEEE Transactions on Visualization and Computer Graphics, vol. 24,
no. 1, pp. 468–477, 2018.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 14

[14] C. North and B. Shneiderman, “Snap-Together Visualization:
A User Interface for Coodinating Visualizations via Relational
Schemata,” in Proceedings of the Working Conference on Advanced
Visual Interfaces, 2000, pp. 128–135.

[15] C. North, N. Conklin, and V. Saini, “Visualization Schemas for
Flexible Information Visualization,” in Proceedings of IEEE Sympo-
sium on Information Visualization, 2002, pp. 15–22.

[16] T. Pattison and M. Phillips, “View Coordination Architecture for
Information Visualisation,” in Proceedings of Asia-Pacific Symposium
on Information Visualisation, 2001, pp. 165–169.

[17] N. Boukhelifa, J. C. Roberts, and P. J. Rodgers, “A Coordination
Model for Exploratory Multi-View Visualization,” in Proceedings
of International Conference on Coordinated and Multiple Views in
Exploratory Visualization, 2003, pp. 76–85.

[18] C. Weaver, “Visualizing Coordination In Situ,” in Proceedings of
IEEE Symposium on Information Visualization, 2005, pp. 165–172.

[19] P. Koytek, C. Perin, J. Vermeulen, E. André, and S. Carpendale,
“MyBrush: Brushing and Linking with Personal Agency,” IEEE
Transactions on Visualization and Computer Graphics, vol. 24, no. 1,
pp. 605–615, 2018.

[20] A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. T. Stasko, J. Thompson,
M. Brehmer, and Z. Liu, “Critical Reflections on Visualization Au-
thoring Systems,” IEEE Transactions on Visualization and Computer
Graphics, vol. 26, no. 1, pp. 461–471, 2020.

[21] L. Grammel, C. Bennett, M. Tory, and M. Storey, “A Survey
of Visualization Construction User Interfaces,” in Proceedings of
Eurographics Conference on Visualization - Short Papers, 2013.

[22] H. Mei, Y. Ma, Y. Wei, and W. Chen, “The design space of
construction tools for information visualization: A survey,” Journal
of Visual Languages & Computing, vol. 44, pp. 120–132, 2018.

[23] C. Stolte, D. Tang, and P. Hanrahan, “Polaris: A System for
Query, Analysis, and Visualization of Multidimensional Relational
Databases,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 8, no. 1, pp. 52–65, 2002.

[24] J. Zong, D. Barnwal, R. Neogy, and A. Satyanarayan, “Lyra
2: Designing Interactive Visualizations by Demonstration,” IEEE
Transactions on Visualization and Computer Graphics, 2021.

[25] B. Yu and C. T. Silva, “VisFlow - Web-based Visualization Frame-
work for Tabular Data with a Subset Flow Model,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 23, no. 1, pp.
251–260, 2017.

[26] ——, “FlowSense: A Natural Language Interface for Visual Data
Exploration within a Dataflow System,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 26, no. 1, pp. 1–11, 2020.

[27] M. Bostock and J. Heer, “Protovis: A Graphical Toolkit for Visual-
ization,” IEEE Transactions on Visualization and Computer Graphics,
vol. 15, no. 6, pp. 1121–1128, 2009.

[28] L. Wilkinson, The Grammar of Graphics, Second Edition. Springer,
2005.

[29] G. Li, M. Tian, Q. Xu, M. J. McGuffin, and X. Yuan, “GoTree: A
Grammar of Tree Visualizations,” in Proceedings of ACM Conference
on Human Factors in Computing Systems, 2020, pp. 1–13.

[30] X. Pu and M. Kay, “A Probabilistic Grammar of Graphics,” in
Proceedings of ACM Conference on Human Factors in Computing
Systems, 2020, pp. 1–13.

[31] Y. Kim and J. Heer, “Gemini: A Grammar and Recommender
System for Animated Transitions in Statistical Graphics,” IEEE
Transactions on Visualization and Computer Graphics, 2021.

[32] A. Satyanarayan, K. Wongsuphasawat, and J. Heer, “Declarative
Interaction Design for Data Visualization,” in Proceedings of ACM
Symposium on User Interface Software and Technology, 2014, pp. 669–
678.

[33] J. S. Yi, Y. ah Kang, J. T. Stasko, and J. A. Jacko, “Toward a
Deeper Understanding of the Role of Interaction in Information
Visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 13, no. 6, pp. 1224–1231, 2007.

[34] S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit, “LineUp:
Visual Analysis of Multi-Attribute Rankings,” IEEE Transactions on
Visualization and Computer Graphics, vol. 19, no. 12, pp. 2277–2286,
2013.

[35] M. Behrisch, T. Schreck, and H. Pfister, “GUIRO: User-Guided Ma-
trix Reordering,” IEEE Transactions on Visualization and Computer
Graphics, vol. 26, no. 1, pp. 184–194, 2020.

[36] D. Liu, D. Weng, Y. Li, J. Bao, Y. Zheng, H. Qu, and Y. Wu,
“SmartAdP: Visual Analytics of Large-scale Taxi Trajectories for
Selecting Billboard Locations,” IEEE Transactions on Visualization
and Computer Graphics, vol. 23, no. 1, pp. 1–10, 2017.

[37] E. Wall, S. Das, R. Chawla, B. Kalidindi, E. T. Brown, and A. En-
dert, “Podium: Ranking Data Using Mixed-Initiative Visual An-
alytics,” IEEE Transactions on Visualization and Computer Graphics,
vol. 24, no. 1, pp. 288–297, 2018.

[38] W. Chen, F. Guo, D. Han, J. Pan, X. Nie, J. Xia, and X. Zhang,
“Structure-Based Suggestive Exploration: A New Approach for
Effective Exploration of Large Networks,” IEEE Transactions on
Visualization and Computer Graphics, vol. 25, no. 1, pp. 555–565,
2019.

[39] C. Xie, W. Zhong, and K. Mueller, “A Visual Analytics Approach
for Categorical Joint Distribution Reconstruction from Marginal
Projections,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 23, no. 1, pp. 51–60, 2017.

[40] D. Weng, R. Chen, Z. Deng, F. Wu, J. Chen, and Y. Wu, “SRVis:
Towards Better Spatial Integration in Ranking Visualization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 25, no. 1,
pp. 459–469, 2019.

Ran Chen is currently a Ph.D. student in the
State Key Lab of CAD&CG, Zhejiang University.
He received the B.E. degree from Zhejiang Uni-
versity in 2018. His research interests mainly lie
in tools and systems to author visualizations.

Xinhuan Shu is currently a Ph.D. candidate in
the Department of Computer Science and Engi-
neering at the Hong Kong University of Science
and Technology (HKUST). She received her B.E.
degree in Computer Science and Technology
from Zhejiang University, China in 2017. Her re-
search interests include data-driven storytelling,
animated visualization, and visual analytics.

Jiahui Chen received her B.Eng. degree from
Zhejiang University in 2016. She is now pursuing
an M.Eng. in computer science and technology
in the State Key Lab of CAD&CG, Zhejiang Uni-
versity. Her research interests include visualiza-
tion and visual analytics.

Di Weng received his B.S. degree in Computer
Science from Taishan Honored College, Shan-
dong University in 2016. He is currently pur-
suing the doctoral degree with the State Key
Lab of CAD&CG, Zhejiang University. His re-
search interests mainly include data mining, vi-
sualization, and visual analytics of large-scale
urban data. For more information, please visit
https://dweng.org.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 2021 15

Junxiu Tang received a B.S. degree in Digital
Media Technology from Zhejiang University in
2019, where he is currently pursuing a doctoral
degree with the State Key Lab of CAD&CG, Zhe-
jiang University. His research interests mainly
include information visualization tools and data-
driven storytelling.

Dr. Siwei Fu is an associate research scien-
tist in Zhejiang Lab. His main research inter-
ests include visual analytics, intelligent user in-
terface, and natural language interface. He re-
ceived his Ph.D. degree in Computer Science
and Engineering from the Hong Kong University
of Science and Technology. For more informa-
tion, please visit https://fusiwei339.bitbucket.io/

Dr. Yingcai Wu is a Professor at the State
Key Lab of CAD&CG, Zhejiang University. His
main research interests are information visual-
ization and visual analytics, with focuses on ur-
ban computing, sports science, immersive vi-
sualization, and social media analysis. He re-
ceived his Ph.D. degree in Computer Science
from the Hong Kong University of Science and
Technology. Prior to his current position, Dr. Wu
was a postdoctoral researcher in the University
of California, Davis from 2010 to 2012, and a

researcher in Microsoft Research Asia from 2012 to 2015. For more
information, please visit http://www.ycwu.org.

