
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Visualizing the Scripts of Data Wrangling
with SOMNUS

Kai Xiong, Siwei Fu, Guoming Ding, Zhongsu Luo, Rong Yu, Wei Chen, Hujun Bao, Yingcai Wu

Abstract—Data workers use various scripting languages for data transformation, such as SAS, R, and Python. However, understanding
intricate code pieces requires advanced programming skills, which hinders data workers from grasping the idea of data transformation at
ease. Program visualization is beneficial for debugging and education and has the potential to illustrate transformations intuitively and
interactively. In this paper, we explore visualization design for demonstrating the semantics of code pieces in the context of data
transformation. First, to depict individual data transformations, we structure a design space by two primary dimensions, i.e., key
parameters to encode and possible visual channels to be mapped. Then, we derive a collection of 23 glyphs that visualize the semantics
of transformations. Next, we design a pipeline, named SOMNUS, that provides an overview of the creation and evolution of data tables
using a provenance graph. At the same time, it allows detailed investigation of individual transformations. User feedback on SOMNUS is
positive. Our study participants achieved better accuracy with less time using SOMNUS, and preferred it over carefully-crafted textual
description. Further, we provide two example applications to demonstrate the utility and versatility of SOMNUS.

Index Terms—Program understanding, data transformation, visualization design.

F

1 INTRODUCTION

S CRIPTING languages including SAS, R, and Python have been
widely accepted by data workers for data transformation. They

usually seek to understand the semantics of scripts in various
scenarios. For example, validation (or called double-checking in
some companies and laboratories) is important for data scientists.
A data scientist might seek to understand code pieces written by
others, then locate and correct possible mistakes. Understanding
the semantics of an intricate script, however, requires advanced
programming skills. And sometimes, the process is tedious and
error-prone [48], [62], [71].

A number of program visualization techniques have been
proposed for debugging and communication. For example, some
techniques, such as Whyline [45], Timelapse [14], and FireCrys-
tal [59], utilize visualizations to help programmers identify and
fix bugs. Those debugging tools focus on revealing the runtime
behavior, such as the values of objects and variables, on allowing
programmers to inspect the program state. However, depicting
program states benefits little in communicating the semantics of
code pieces. Others, such as algorithm visualizations [12], [66] and
automatic generation of flowcharts [15], [17], [69], aim to help
learners understand the flow of algorithms. However, little attention
has been paid to illustrating the process of data transformation.

In this work, we explore visualization design for depicting the
semantics of code pieces in the context of data transformation. To
present individual data transformations, we first outline a design
space consisting of two primary dimensions, i.e., key parameters

• K. Xiong, G. Ding, W. Chen, H. Bao, and Y. Wu are with the State Key Lab
of CAD&CG, Zhejiang University, Hangzhou, China, and with Zhejiang
Lab, Hangzhou, China. E-mails: {kaixiong, dinggm, chenvis}@zju.edu.cn,
bao@cad.zju.edu.cn, ycwu@zju.edu.cn.

• S. Fu and R. Yu are with the Zhejiang Lab, Hangzhou, China.
E-mail: fusiwei339@gmail.com, 1721298964@qq.com.

• Z. Luo is with Zhejiang University of Technology, Hangzhou, China, and
also with the Zhejiang Lab, Hangzhou, China.
E-mail: rickyluozs@gmail.com.

• Yingcai Wu and Siwei Fu are the co-corresponding authors.

Manuscript received xx xxx, 20xx; revised xx xxx, 20xx.

to encode and potential visual channels that can be mapped.
Then, we propose a collection of 23 glyphs that demonstrates
the semantics of transformations. Given a code piece containing
a series of functions, data tables are created and changed. To
illustrate the evolution of tables, we contribute the design and
implementation of SOMNUS, a pipeline that accepts a script and
data tables as input and results in a graph model where nodes are
tables while edges are data transformations. SOMNUS consists of
two main components, i.e., a Program Adaptor and a visualization
generator. The Program Adaptor parses code pieces, generates input
and output tables for each statement, and infer transformations
based on rules. On the other hand, the visualization generator
creates visual representations to illustrate data provenance. We
claim that SOMNUS facilitates the understanding of intricate code
pieces, including the semantics of individual operations and table
dependencies of the entire data wrangling process. To some extent,
SOMNUS supports some higher-level tasks such as helping users
debug programs of data wrangling and correct errors in the code.
Besides, the idea of SOMNUS is general and can be adapted to
various scripting languages, including R, Python, etc.

To evaluate the effectiveness of the glyph design and SOMNUS,
we conducted a controlled study to compare our visual representa-
tions with carefully-crafted textual descriptions. The results show
that our participants can understand complex wrangling scripts
more accurately in a shorter time and prefer our visualizations
in terms of helpfulness and interpretability. In addition, we
demonstrate the utility and versatility of SOMNUS with two
example applications. The first application shows how SOMNUS

can be adapted to Python and facilitates the validation of a piece
of wrangling script. As for the second application, SOMNUS is
adapted to R and used to support MORPHEUS [25] in interactive
data transformation.

To conclude, the contributions in this paper include: 1) a
design space consisting of two dimensions that guide the design
of a collection of 23 glyphs, 2) a pipeline, called SOMNUS, that
visualizes the creation and evolution of data tables across a series

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

of transformations, 3) a controlled study that evaluates how users
perform with visualization and text using comparison tasks, and 4)
two example applications that showcase how SOMNUS can benefit
different usage scenarios.

2 RELATED WORK

2.1 Program Visualization
Program visualization refers to “the visualization of actual program
code or data structures in either static or dynamic form” [77]. In
program visualization, different audiences vary in analytical tasks,
which require tailored visual representations [16]. For example,
software engineers and data scientists are dedicated to development
activities including programming, debugging, testing, etc. Systems
focusing on these activities usually need to visualize the runtime
behavior of the program including object states, function calls,
etc. Another example is that, data workers [4], [52] and education
practitioners expect an effective method for comprehending or
learning the semantics of a program. We note that the concerns
of different roles are not strictly differentiated. For example,
data workers can also develop a wrangling program to find new
insights on data. In short, program visualization is usually used for
debugging and education tasks [36].

Many debugging tools leverage visualizations to help devel-
opers identify and fix bugs. Some of them, such as Hdpv [72],
Heapviz [3], and Anteater [24], present task-specific or code-related
information about the execution by giving a forest view. Others can
reveal the runtime behavior, such as DDD [82], deet [32], ZStep
95 [50], and VisuFlow [57]. Whyline [45] and Theseus [49] intro-
duce visualizations within integrated development environments,
while FireCrystal [59] and Timelapse [14] focus on visualizing
interactive behaviors on web pages. Hoffswell et al. [35] propose
visual debugging techniques to inspect program states for reactive
data visualization. A number of works [7], [8], [33], [36], [73]
leverage in-situ visualizations to display the program behavior.

SOMNUS can be used for debugging the process of data
transformation. However, our technique differs from prior work
in two aspects. First, instead of visualizing internal states or
variables of programs, SOMNUS shows the semantics of code
pieces, which involves input and output tables, the type of data
transformation, and parameters of functions. Second, data presented
in the aforementioned approaches are generic types such as
string and numbers. On the contrary, data, in the context of data
transformation, means 2-D data tables consisting of columns and
rows. The presentation of 2-D data tables is more challenging than
generic data types.

Some program visualization systems are designed for education.
They intend to improve students’ understanding of particular
aspects of programs [77]. Online Python Tutor [29] is a web-
based visualization tool that illustrates the runtime state of various
data structures, which can be a valuable pedagogical aid for
teaching Computer Science courses. Algorithm visualization has
been a hot research topic as having a significant impact on
students learning behavior [28] and being promising for facilitating
education [65]. A variety of algorithm visualizations [12], [18],
[31], [66] depict program behavior on every step to facilitate
understanding the program. Some tools automatically convert
source code to flow charts, including Visustin v7 [60], Aut-
oFlowchart [69], code2flow [17], Flowgen [46], and VizMe [15].
The aforementioned approaches are explicitly designed for some
algorithms or applications. Nevertheless, none of them are proposed

in the context of data transformation. In this paper, we design and
implement SOMNUS that the creation of evolution of data tables
across a series of transformations.

2.2 Data Wrangling
Data wrangling is an arduous process of transforming, reformatting,
and integrating data to make it more palatable for miscellaneous
downstream purposes, including visualization and analysis [42].
Many toolkits written in R (e.g., dplyr [79], tidyr [80]) or Python
(e.g., Pandas [64]) have been proposed to support the process.
These toolkits provide excellent expressiveness for data workers to
wangle data. However, for data workers who are not proficient in
R or Python, learning a new programming language or toolkits for
wrangling tasks would spend substantial time and effort [67].

To lower the barrier of data wrangling, various interactive
systems and prototypes are proposed. Microsoft Excel, Tableau
Prep Builder [70], and OpenRefine [37] provide a menu-based
GUI for users to iteratively clean, transform, and integrate data.
Some systems embed a recommendation engine to suggest possible
transformations. Data Wrangler [30], [42] and its commercial
successor Trifacta [76] recommend transformations based on users’
manipulation. The others, such as Foofah [39] and Wrex [22],
borrow ideas from programming by example that synthesizes
code pieces for data transformation based on a small illustrative
example provided by users. Some systems support wrangling for
graphs, websites, etc. For example, Ploceus [54], Orion [34], and
Origraph [10] support graph editing and construction. On the other
hand, Vegemite [51], Dataxformer [2], [55], and WebRelate [38],
are designed to transform data from different websites.

The aforementioned approaches assist data workers in con-
ducting data transformations. SOMNUS, on the other hand, targets
presenting the process of data transformation. Some tools, such as
Tableau Prep Builder [70], OpenRefine [37], Data Wrangler [30],
[42], and Trifacta [76], record and present the process of data
transformation using textual descriptions. We argue that our
visualization design is easier to understand and more effective than
textual descriptions, and we report the comparison in Section 6 to
justify the argument.

Kasica et al. [43] formed 21 types of operations based on a
multi-table framework for data wrangling by two dimensions, i.e.,
three data types (rows, columns, and tables) and five operations
(create, delete, transform, separate, and combine). Furthermore,
each type of operation is represented by an intuitive icon. However,
these icons are not mapped to data. Inspired by these icons, we
design our glyphs by supplementing them with parameters and
additional types of visual channels to present the semantics of
transformation operations.

2.3 Provenance
Provenance records the history of changes and advances during
analysis [63]. Kandel et al. [41] emphasized the significance of
capturing provenance from data quality operations and wrangling
workflows when data workers share their data and scripts.

A number of works have been proposed to capture and visualize
data provenance. For example, Tableau Prep Builder [70] provides
an icon for each operation in a data flow chart. Although these
icons are easy to understand, they can not visualize the parameters
of operations, such as the specificity of which tables/rows/columns
are transformed and how. By contrast, our glyph design can
visualize both the type of data transformation and its parameters,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

which facilitates the comprehension of semantics because it
reveals more details on data changes [53]. TACO [58] is a visual
comparison tool for investigating the differences and changes
between multiple tabular data over time. However, it focuses on
quantitative homogeneous tables and does not support visualizing
complex data transformations, including fold and unfold. SOMNUS,
on the contrary, focuses on visualizing the semantics of scripts
and supports a wide range of data transformations mentioned by
Kasica et al. [43]. Some tools leverage animations to visualize data
provenance. Data Tweening [44] generates intermediate results for
each data transformation in a SQL query session, facilitating the
understanding and learning of complex transformations. Datama-
tions [61] explains the transformation steps of a data analysis
pipeline by automatically generating a looping animated GIF
from code. Animation is useful for communication. However,
the exploration of animation is slower as users often replay
the animation dozens of times, and they can not control the
animation at their own pace [27]. Additionally, those animation
tools focus on presenting the data provenance of a single table.
In contrast, our work utilizes node-link graphs with glyphs to
illustrate data provenance, which can better present the process
of data transformations and portray the data provenance of multi-
tables simultaneously.

3 DESIGN REQUIREMENT

Our goal is to design a set of visual representations to help data
workers understand and communicate a script of data transfor-
mation. To this end, we collaborate with two data analysts in a
national research lab who have at least three years of expertise in
data science. Following Munzner’s guidelines [56], we conducted
three rounds of interviews to iteratively extract design requirements.
Our interviews focused on their working scenarios, such as double-
checking, where they are required to understand the semantics of
wrangling scripts. One major challenge is that they often need
to recall or look up the usage and syntax of various functions.
One analyst reported, “I like Python. But sometimes I need to
understand scripts written in R.” He added, “Cheat sheets are
useful (to understand R functions) in many cases. I may also
search in Google and RDocumentation1 to understand advanced
parameters.” However, there is a comprehension gap between the
usage of functions and the semantics of practical code. One analyst
complained that he still needs to figure out how a line of code
works on data after understanding the R function. In addition, the
understanding of individual functions helps little in revealing the
entire wrangling process. In light of these complaints and feedbacks
collected from interviews, we summarized the following design
requirements. Particularly, R1 to R4 target the design of glyphs
presenting individual data transformations, while R5 to R7 guide
the design of SOMNUS.
R1: Present the Semantics: To help data workers understand a

function, our visualization design should precisely present
the semantics, including the function name, input, output,
and parameters of a function. As the number of functions
could be large, designing visualization for each function may
burden recognition. Instead, we should present the type of data
transformation to which the function belongs. We distinguish
between “data transformation” and “function,” as the former
refers to a manipulation categorized in Kasica et al. [43] while
function corresponds to a method in a programming language.

1. https://www.rdocumentation.org/

R2: Link with Data: When writing scripts, data workers usually
need to “look at” data tables by printing out a table or tem-
porary results. One analyst usually works with Jupyter [40],
and he commented, “I like to print out results to verify the
operations.” Therefore, besides function-specific information,
the visualization should reflect detailed information of a table,
including content, shape, name, etc.

R3: Depict Necessary Information: Much information is in-
volved in a function, such as function parameters, input and
output data tables. We note that not all parameters are essential.
Similarly, when a table is large, illustrating all its content is
impossible and unnecessary. As a result, we should elicit and
encode critical information from a function and representative
content in a table.

R4: Keep Encoding Consistent: Glyphs in SOMNUS should have
consistent visual encodings. When visualizing a sequence of
functions, consistent visual encoding facilitates understanding
each data transformation and the entire procedure.

R5: Reveal Table Provenance: Data tables are evolved and
correlated through functions. For example, an output table of
a data transformation may serve as input for another, and
so forth. Data provenance records how data was created
and changed, which is significant in tracing data processing
changes back to their original sources [11]. As one analyst
noted, “Some operations (such as join) rely on multiple tables.
Displaying how tables are correlated is useful in debugging.”
Hence, the visualization should provide an overview of the
entire data provenance.

R6: Dig into Details: Data workers usually need to validate
a series of functions. Hence, they seek to grasp detailed
information on each data transformation. Our visualization
should allow users to switch between an overview and a
detailed view of individual transformations.

R7: Independent of Programming Languages: Data workers
may use various toolkits for data transformation, such as
dplyr [79] in R and Pandas [64] in Python. To ensure general-
izability, our visualization design should be independent of
toolkits and programming languages.

4 DESIGN OF GLYPHS

Guided by the aforementioned design requirements, we design a
collection of glyphs that presents the semantics of functions. To
answer questions like, “which information shall we encode” and
“which visual channel can be mapped,” we structure the design
space by two primary dimensions, i.e., the type of parameters and
potential visual channels.

4.1 Parameters Space
The analysis of toolkits helps us identify key information that
should be encoded in the design of glyphs (R1, R3). In this paper,
we focus on three packages in R and Python, i.e., dplyr, tidyr,
and Pandas, because they all target data transformation and are
open-source in nature. We have examined 160 functions in total,
where 84 are from dplyr, 23 from tidyr, and 53 from Pandas.
We read the official documentation of these functions, reveal
semantics under different parameters, and map them to the type of
transformations. Moreover, we run these functions with different
parameters to understand how parameters affect the transformation
results. Finally, we categorize six key parameters that should be
mapped to visual channels.

https://www.rdocumentation.org/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Function Name reflects which operation does the function
targets. Since the name does not have a one-to-one mapping
with data transformations, the information, in some cases, benefits
little in communicating the semantics of a function. For example,
the select function in dplyr can be mapped to three different
transformations, i.e., Delete Columns, Rearrange, and Transform
Columns, depending on parameters and data tables. We do not
emphasize function names in our visualization design.

Data Tables are described as variables in the script and are
input and output of a function. We identify a variable string as a
table name. Data tables are stored in a well-designed data structure,
e.g., data.frame in R or DataFrame in Python, and can vary in
dimensions In this paper, we focus on 2-dimension tables, which
are collections of rows and columns.

Explicit Columns/Rows are the columns/rows explicitly men-
tioned as parameters in functions. Explicit columns are usually
referred to using column names, while explicit rows are men-
tioned using row indexes. Taking the statement as an example,
tree2=arrange(trees, Girth), the parameter Girth is the name of
an explicit column in the table trees. Another example is that,
in the statement mtcars temp=slice(mtcars, 1, 5), the parameters
1, 5 are two-row indexes of the table mtcars. The quantities of
explicit columns and rows are usually limited. Since they are key
information in a function, they should be illustrated and highlighted
in the glyph design.

Implicit Columns/Rows are not listed as parameters in a
function. Rather, they are selected in the data transformation based
on filtering criteria. For example, when deleting duplicate rows,
rows with identical values are compared and filtered. The presenta-
tion of implicit columns/rows is beneficial for understanding data
transformation. Because the volume of implicit elements is usually
large, depicting all these is virtually impossible. As a result, we
should select and encode representative ones in the glyph.

Contextual Columns/Rows are not involved in a data trans-
formation. Specifically, they do not meet filtering criteria are not
selected during transformation. Similar to explicit and implicit ele-
ments, we argue that context is also useful for communicating data
transformation. For example, contextual columns keep unchanged
when deleting a column to show a contrast to the deleted one [43].
Similar to implicit elements, we should encode a limited number
of contexts.

Transformation Parameters Beside the type of data object,
a function usually includes a number of parameters to precisely
acknowledge function details. They can be inline functions (e.g.,
sum, min, regular expression, etc.), mathematical operators (e.g.,
“+,” “-,” etc.), or transformation-specific identifiers (e.g., separator
in separate and unite). The visualization of these parameters is
critical to revealing subtle differences among transformations.

4.2 Design Rationale

Kasica et al. [43] structured a multi-table framework for data wran-
gling. The framework includes 15 categories of transformations,
and each may contain several subtypes. For example, based on
whether the operation modifies table schema, Transform Tables
includes two subtypes, i.e., Rearrange and Reshape. Further, they
designed icons for 21 (sub)types of data transformations. These
icons are intuitive and inspiring and provide a good starting point
for our glyph design. We distinguish between an icon and a glyph,
in which the former is a visual representation only and irrelevant
to data; in contrast, the latter, which is widely used in various tasks

store

price

18$

25$

15$

store_extract

price

18

25

15

Extract price matching ‘(.)$’

Table Metaphor

In-table Text

Out-table Text

Other Considerations

A

B

C

C C

C

D

21 3

price…

store…

Fig. 1. We use Transform Columns as an example to showcase different
visual channels.

to represent multidimensional data [19], [74], [78], [81], maps data
to visual channels such as color, size, etc. By analyzing all icons
and the parameter space, we distill the following design guidelines
in creating our glyph collection.

Input and Output Tables: Each icon designed by Kasica et al.
is composed of three main parts, i.e., an input table, an output
table, and an arrow indicating the transformation. We follow this
metaphor (Figure 1(a)) in designing our glyph collection because
these are necessary for presenting a transformation (R1). In the
following description, we use “data” to indicate data tables and use
“table” to refer to the table metaphor in a glyph.

Table Shape: The shape of a table is affected by the number
of explicit, implicit, and contextual columns/rows (R1, R3). All
explicit entities are depicted in the table due to their importance. For
implicit entities, we selectively choose one that is representative.
In some cases, “one” means “one pair”. For example, when
depicting “remove duplicate rows”, we select two identical rows as
implicit entities. Contextual entities are displayed for two reasons.
First, it helps to present the semantics of a transformation by
posing a contrast to explicit/implicit entities. Second, it retains the
table metaphor. For example, in “Create Table”, all entities are
contextual. We demonstrate 3×3 contextual cells to indicate an
empty table. For other transformations, context is limited to one or
two columns/rows.

Cell Color: Color encoding is meaningful in Kasica et al. [43].
It is designed for distinguishing cell types (e.g., title cells are white
while content cells are colored), indicating the type of data object
(e.g., column and row), depicting unchanged columns/rows, and
presenting correlated columns/rows (e.g., the icon for Interpolate).
The color encoding of our glyph is primarily borrowed from Kasica
et al. . Further, we extend prior work from two aspects. First, we
use white color to represent empty cells. At the same time, title
cells are colored dark gray. Second, we use striped cells to depict
those with an empty or blank string (R4).

Out-table Text: Some text is displayed outside the table. For
example, for transformations targeting specific rows by row index,
we present row index aside from the table (R3). Besides, we
present table names and the type of transformation that a function
belongs to. Following the text in Trifacta [76], we present textual
information below the input and output tables to describe the
semantics of transformations (Figure 1(c)) (R1).

In-table Text: Presenting data content is critical to assisting
data workers to understand a function (R1, R2). Due to limited
glyph size, only contents in explicit and implicit columns/rows are
depicted in the glyph (Figure 1(b)). Usually, it is not possible
to present all values in these elements. Hence, we randomly
sample values from data. By encoding in-table text, as well as
out-table text, we are able to distinguish data transformations

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

BA C

Fig. 2. By depicting in-table and out-table text, a glyph can differentiate different types of transformations. Taking Create Columns as an example, (a)
shows the creation by filling in values manually, (b) shows extracting values from existing columns, and (c) depicts merging values from existing
columns.

with a subtle difference. For example, there are four common
subtypes of transformations for Create Columns [43], e.g., creating
manually (Figure 2(a)), mutating from other columns (example of
Create Columns in Figure 4), extracting substring of one column
(Figure 2(b)), and merging multiple columns (Figure 2(c)). Another
type of information shown in a table is special symbols. For
example, we use and to illustrate sorting in a descending and
ascending order, respectively.

Other Considerations: Besides the aforementioned guidelines,
we explore visualization techniques that enhance the perception
of data tables and transformation (Figure 1(d)). First, to indicate
the shape of data, we design both horizontal and vertical scroll
bars in glyphs. The size of scroll bars is proportional to the shape
of data tables. We acknowledge that this design cannot show a
precise number of columns/rows. Instead, it informs that the glyph
presents a portion of an entire data table (R2). Second, to emphasize
the change of a table (R1), we highlight the correlation between
explicit columns in input and output tables.

4.3 Results
Following the aforementioned design space, we derive 21 glyphs
for data transformation. Besides, we create glyphs for two more
transformations. First, in Kasica et al. [43], Fold and Unfold share
one icon with different arrow directions. We distinct the two
operations with two glyphs. Second, we add a glyph for Rearrange
Columns because it is triggered by a popular function, select, in
dplyr. To save space, Figure 4 illustrates 15 out of 23 glyphs, and
the full glyph collection can be found in the supplemental material.

5 DESIGN OF SOMNUS

In this section, we present the design of SOMNUS, a pipeline
that accepts data tables and a piece of code as input, and results
in a visual representation to show the entire procedure of data
transformations. Code pieces may contain complex control flow,
including a conditional statement, loops, function definition, etc.
In this paper, we limit the scope to code consisting of assignment
statements only. Though some modules are implemented based
on specific programming languages and toolkits, we argue that
the design of SOMNUS can be applied to different programming
languages. In the presentation, we use dplyr, a toolkit of R, as
examples by default. Figure 3 shows the architecture of SOMNUS,
which consists of two core modules, i.e., a programming adaptor
and a visualization generator.

5.1 Program Adaptor
Program adaptor aims to generate a series of transformation
specifications given data tables and a script. Though we implement

Program
Execution

Code Parser

Transformation
 Inference

Glyph Presentation

Data Provenance

Construction

Program Adaptor
Script

Transformation

Specification

Visualization Generator

Provenance Graph

Data Tables

Fig. 3. The architecture of SOMNUS consists of two major modules: a
programming adaptor and a visualization generator. The programming
adaptor accepts a script and data tables as input and outputs a collection
of transformation specifications. The visualization generator generates
table provenance by utilizing the specifications.

an adaptor for each programming language, all adaptors share
three common steps, i.e., program execution, code parsing, and
transformation inference. The descriptions of this module are
independent of programming languages (R7).

5.1.1 Program Execution

After a script and data tables are fed into the program adaptor
module, the script will be executed using an interpreter based
on programming languages. The primary goal of this step is to
obtain input and output data for each function, which is beneficial
for 1) providing data value when plotting glyphs (R2) and 2)
inferring the type of data transformation for each function (R1) (see
Transformation Inference for details). The Program Execution steps
automatically insert statements for importing necessary libraries to
interpret and execute the script correctly.

5.1.2 Code Parser

A code parser accepts a script as input and parses each line of code
to obtain 1) the name of the input and output table, 2) function
names, and 3) parameters of functions (R3). In some toolkits, a
transformation can be invoked through various approaches. For
example, given a data table, named “tbl,” containing three columns
in order, e.g., “column1”, “column2”, and “column3”. Assume
“tbl” is stored as DataFrame in Python, Rearrange Columns
can be expressed as pandas.DataFrame(tbl, columns=[‘column2’,

‘column1’, ‘column3’]). Also, the same transformation can be
achieved by tbl[[‘column2’, ‘column1’, ‘column3’]]. In the current
implementation of SOMNUS, we only support statements that have
explicit function names and input and outputs.

Similar to Program Execution, results generated by a code
parser are critical to inferring the type of transformations (R1).
Besides, tracing the input and output tables helps to construct the
provenance of data.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Tables Columns Rows
C
re
a
te

D
e
le
te

S
e
p
a
ra
te

T
ra
n
s
fo
rm

C
o
m
b
in
e

Fig. 4. Following Kasica et al. [43], we display 15 out of 23 transformations by two dimensions, i.e., the type of data object and five operation
categories. All glyphs are generated based on real data tables and functions from tidyr [75] and dplyr [21]. The entire glyph collection can be found in
the supplemental material, which is available online at https://github.com/xkKevin/Somnus.

5.1.3 Transformation Inference
After parsing individual functions and their input and output
tables, we build a mapping between functions and the type of
transformations (R1). In most cases, one function is mapped to one
data transformation. We create rules for mapping the name and
parameters of a function to one type of transformation. For example,
we map filter to Delete Rows, separate to Separate Columns,
and count to Summarize. However, function information is not
enough in some cases. For example, given the data table (“tbl”)
mentioned above, the statement select(tbl, “column3”, “column1”,

“column2”) equals to Rearrange Columns. On the other hand, if the
input table has four columns in order, e.g., “column3”, “column1”,
“column2”, and “column4”, the same statement results Delete
Columns as “column4” is omitted in the output table. In this case,
we derive the type of transformations by comparing the input table
with the output.

We note that some functions involve a sequence of transfor-
mations. Taking the data table (“tbl”) as an example, the function

select(tbl, column1, column4 = column2) first performs Delete
Columns by deleting “column3”. Then, it Transform Columns by
renaming “column2” to “column4”. In these cases, we identify
multiple transformations for a function. One challenge is to obtain
input and output tables for each transformation, which are critical
to glyph generation. The current prototype establishes rules and
replaces a function with multiple ones, where each corresponds to
a transformation. Then, the entire script is executed again to derive
the input and output data tables.

To save screen space, some functions can be grouped and
merged. For example, the two functions, e.g., rename(tbl, column4
= column1) and rename(tbl, column5 = column2), can be combined
into one rename(tbl, column4 = column1, column5 = column2).
In such cases, we depict the two functions using one data
transformation. The current prototype supports the combination of
consecutive functions in three cases, i.e., Rename Columns, Delete
Columns, and Delete Rows. We plan to investigate more rules for
combining the semantics of functions in future research.

https://github.com/xkKevin/Somnus

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

5.1.4 Failure Modes
To improve reliability, SOMNUS is able to deal with five types
of failure modes. First, if the script contains operations that are
unsupported, SOMNUS can compile and run the script properly.
However, there are no glyphs for these operations. Second, if
the function is not supported in the Program Adaptor, such as
drop na in tidyr, SOMNUS shows the function name only. Third,
for operations that are not function-based, e.g., “df = df[df.col1
>0]” in Pandas, SOMNUS displays nothing on the edges. Fourth,
SOMNUS decomposes operations involving many columns and rows
into multiple ones and visualizes them with a sequence of glyphs,
as described in Section 5.1.3. Finally, SOMNUS does not fully
support the parsing of non-assignment statements, such as loops or
conditional statements. We acknowledge that this policy may hinder
data workers from understanding the logic of the entire script. For
example, given a conditional statement like “if CONDITION then
OPERATION1 else OPERATION2”, SOMNUS displays only one
glyph representing either OPERATION1 or OPERATION2 based
on the results of Program Execution.

5.2 Visualization Generator
The result of Program Adaptor is a set of transformation specifica-
tions accompanied by input and output data tables. This module
aims to generate visual representations depicting both an overview
and detailed information for transformations.

5.2.1 Constructing Data Provenance
Data provenance can be formed as a graph, where nodes are data
tables and edges are data transformations (R5). The provenance
graph is layered, and we leverage the Eclipse Layout Kernel [23]
for positing graph nodes. As shown in Figure 5, each node is
rectangular, and we depict useful table information in each node,
including the line index where the table is created, the table name,
and the size of the table.

Edges connecting nodes are data transformations. According to
the number of input and output tables, we categorize the edges into
three types. In most cases (Figure 8(d)), a transformation accepts a
table as input and outputs a transformed one. We depict the edge
as a directed line. Second, some transformations merge multiple
data tables into one, such as Extend, Supplement, and Match. These
transformations are shown as convergence edges (Figure 7(c)).
Similarly, transformations that result in multiple output tables from
one input are depicted as divergence edges, as shown in Figure 5.

Fig. 5. The transformation, Decompose, results in a divergence edge,
which is generated by two statements, profile = read.csv(”profile.csv”)
and gender = group split(profile, Gender).

5.2.2 Presenting Glyphs
To present the details of data transformations, we depict glyphs
aside from each edge in the provenance graph (R6). Since glyphs

may contain in-table and out-table text, they are placed horizontally
without rotation for better readability. For functions that are not
supported by our glyph collection, no glyph is displayed.

5.3 Implementation

SOMNUS is implemented as a web-based client-server system. The
backend is implemented using flask, while the frontend is built in
Vue.js and D3.js [13]. The web interface consists of four panels,
i.e., a Data Panel, a Script Panel, a Table Panel, and a Graph Panel.
The Data Panel (Figure 8(a)) allows users to upload their input
tables as needed. Users need to select a programming language
and copy-paste a piece of data wrangling code to the Script Panel
(Figure 8(b)). Then the backend runs based on the input tables
and the script provided by the user. The Graph Panel (Figure 8(d))
displays table provenance (R5), while the Table Panel (Figure 8(c))
is used to show the intermediate tables generated in the process
of data wrangling (R2). To assist the investigation of lengthy table
provenance, the Graph Panel supports zooming and panning (R6).

Interactions across panels are integrated to facilitate the
exploration among script, data tables, and data provenance. First,
when a user clicks on a node (i.e., data table) in the provenance
graph, the Table Panel displays the detailed table. Similarly, when
clicking on edge (i.e., transformation) in the graph, its function in
the Script Panel is located and highlighted, and vice versa.

We focus on data wrangling from two popular programming
languages, i.e., R and Python. Specifically, the current prototype
supports 25 commonly used functions from tidyr [75] (e.g., sepa-
rate, gather, spread, etc.) and dplyr [21] (e.g., filter, select, mutate,
etc.), and ten functions from Pandas [64] (e.g., pandas.unique,
pandas.merge, pandas.concat, etc).

6 USER STUDY

To assess the effectiveness of the visualization design, we conducted
a controlled study centered on two high-level questions: 1) does
the glyph design improve user efficiency in comprehending the
semantics of data wrangling? and 2) does the provenance graph
facilitate the understanding of data dependencies? We ran the
evaluation using real-world data tables and scripts written in the R
programming language. All documentation, including scripts, data
tables, questions, etc., are provided in the supplemental material.

6.1 Participants and Apparatus

We recruited 20 volunteers (4 females and 16 males) aged 22 to
35 (µ = 25.45, σ = 3.33). The majority of participants (15/20)
were postgraduate students majoring in Statistics or Computer
Science, while the others worked as data analysts or algorithm
engineers in a national research lab. They were all proficient in
programming using Python, JAVA, or Javascript and had experience
in data transformation. In addition, to ensure that all participants
had difficulties understanding scripts, we only recruited those who
had not written a line of code in R. Participants completed the
study using a desktop computer (3.20GHz 8-Core Intel Core i7,
32 GB memory) with a 27-inch monitor (3840×2160 resolution)
and an external mouse and keyboard, and the study was distributed
through Google Chrome on a Windows 10 machine.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

6.2 Techniques

To our knowledge, no prior work targets visualizing the semantics
of data transformation. Hence, we compared the visualization
design with textual description derived from a commercial data
wrangling system, Trifacta [76]. Some description was not directly
supported by Trifacta, such as mapping the values from one
column into another (a subtype of Transform Columns). In these
cases, we generated text by combining the descriptions of two
transformations, e.g., create a new column from original columns
and delete the original ones (italic text will be replaced by column
names). To align with SOMNUS in describing a sequence of
transformations, we included additional information in the textual
description, including line index, the shape of data tables, and the
output table name of a function.

The design of our glyph collection contained textual infor-
mation describing the type of transformation in the glyph. We
noted that the comparison between pure text and visualization
with text would be unfair. To evaluate the effectiveness of visual
representation, we removed the textual description of glyphs in the
study. We envisioned that our glyph design and SOMNUS would be
more effective by including text.

6.3 Tasks and Design

We performed a within-subject design with two experimental
techniques and ten experimental tasks. To address any memory
learning effects, we created two different sets of ten tasks. The
orders of the two techniques and the task sets were counterbalanced
using a Latin square. Within each technique, participants completed
ten tasks which were shown in a fixed order. Thus, the whole
study contained 2 techniques × 2 sets × 10 tasks = 40 trials.
Each task trial included a piece of code, a visual or textual
explanation for the code, and a multiple-choice question where each
question had one or more correct answers. In addition, the study
system provided data tables and documentations of functions for
reference. We chose the multiple-choice test for evaluation because
it could increase participants’ confidence in completing tasks and
be more convenient for statistical analysis of test results over the
constructed-response test [47], [68]. In our study, all questions
and choices are carefully designed from varying perspectives of
table changes and dependencies to answer the above two high-
level questions. However, we do not guarantee they can genuinely
measure participants’ understanding as comprehension is abstract
and hard to access directly.

The ten study tasks consisted of five function understanding
tasks (Func) followed by five script understanding tasks (Script).
Moreover, each question was required to select all correct choices.
Func focused on the semantics of individual functions, including
the output tables and operations. Example choices were statements
such as, “The output table has a different number of rows with
the input table” and “This function renames the column A to B”.
Script focused on the understanding of data provenance through
a sequence of functions. Example questions were, “Which data
tables contribute to the creation of table A?” and “How many data
transformations are performed from table A to B?” We carefully
designed the task questions and choices to avoid ambiguous
answers and maintain the same difficulty across task sets. To
assist the exploration of data provenance, the study system supports
zooming and panning. A participant answered a question correctly
if and only if all correct options were selected.

6.4 Data
To evaluate how our visual design performed in real-world
scenarios, we selected candidate code pieces and data tables
provided by Kasica et al. [43], collected from Github [9], [20].
We focused on functions belonging to two toolkits, i.e., dplyr [21]
and tidyr [75]. We randomly chose a set of statements for Func
and consecutive code pieces for Script. Due to the limitation of
the programming adaptor, some statements, or code pieces, were
inadequate for our studies, such as those without explicit function
names and input tables. Hence, we replaced these statements with
their functional alternatives. In addition, we removed comments to
avoid misleading.

We created two datasets, and each corresponded to one task
set. To maintain the same difficulty level across the two datasets,
we established three rules in dataset creation. First, both datasets
contained the same number of Combine Tables and Separate Tables.
Because these transformations involved more data tables compared
to the rest, they might pose challenges in understanding table
provenance. Second, each dataset included the same number of
functions for Func and Script. In our study, five functions were
applied to Func, and nine functions were used for Script. To
keep the datasets distinct, functions in one dataset could not be
reused in the other. However, exceptions existed for two functions,
i.e., read.csv() and group by(), to ensure that code pieces can be
correctly interpreted. Specifically, read.csv() loaded data at the
beginning of code pieces while group by() served as a prerequisite
for other functions, such as summarise() and mutate(), to achieve
some transformations.

6.5 Procedure
The study began with a brief introduction to data transformation.
Then, we collected demographic information of each participant,
including the experience of programming, age, occupation, etc.
Prior to the main experiment for each technique, participants
performed ten training tasks with a separate dataset. During training
sessions, participants were instructed to think aloud, and the
experimenter helped answer questions and overcome difficulties.
We reminded participants that they could always skip a task when
they were not confident about the answer. In the main experiment,
participants were asked to complete ten tasks with each technique.
The data tables and documentations of functions provided by
the study system were folded by default. Participants could click
to expand this information for reference. Our system recorded
the clicks for further analysis. In addition, the system recorded
task completion times and participants’ answers. After the main
experiment for each technique, participants were asked to rate
the usefulness and intuitiveness of the technique using a seven-
point Likert scale. After the study, a semi-structured interview was
conducted to collect their feedbacks. We took notes during the
whole session. Each participant took approximately one hour to
finish the study and received 10 dollars as compensation.

6.6 Quantitative Results
Accuracy: The individual answer-level results of each question
across the two techniques are provided in the supplemental material.
We found that the accuracies of Q1 in Func Set1 and Q4 in Func
Set2 were very low in both two techniques. There were two possible
reasons for the results. First, the semantics of some Combine
operations like Summarize and Supplement were hard to describe,
which involved the rule of combination, and the number of rows

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0

0.5

1

1.5

2

2.5

Func Script

#Clicks

Textual Desc

Visual Desc

A

0

0.2

0.4

0.6

0.8

1

Func Script

AccuracyB

0

100

200

300

400

500

Func Script

Completion Time (Sec.)C

1

2

3

4

5

6

7

HelpfulnessD E

1

2

3

4

5

6

7

Interpretability

Fig. 6. Among participants, (a) shows the average number of clicks in terms of two task sets and two techniques, (b) and (c) are the average accuracy
and completion time. (d) and (e) display user ratings in terms of helpfulness and interpretability. The error bars indicate the 95% confidence interval.

and columns. Second, participants seldom chose the NOTA option
(i.e., “None of the above”), which was the correct answer for the
two questions. As P16 explained, “When I am not sure about the
answer, I tend to choose the one that seems correct (instead of
NOTA).” Besides, visual descriptions’ accuracy was significantly
higher than that of textual descriptions (see Q5 in Func Set2 and Q4
in Func Set1), which indicates that our visual design is superior to
text in describing complex operations, including fold and left join.
Figure 6(b) depicts the results with a 95% confidence interval. On
average, participants achieved a much higher accuracy with visual
description (µ = 0.85, σ = 0.16) than with textual description
(µ = 0.61, σ = 0.27) for all tasks. Especially for Func, participants
got an average accuracy of 44% (σ = 0.18) with the baseline
technique. And they achieved an accuracy of 75% (σ = 0.16) using
our approach. In our study, textual description described what the
transformation was. However, it helped little in communicating
how the transformation performed. As P9 commented, “Though
the text told me that the function performs left join, I do not know
exactly how left join works.” On the contrary, visual description
helped participants understand the semantics of transformations
that they were unfamiliar with.

Completion time: We performed an independent-samples t-
test with a null hypothesis that the participants took the same
amount of time finishing tasks with each technique. We found a
marginally positive effect of our approach with which participants
completed Func faster than the baseline technique (p < 0.1). We
also ran a paired two-sample Wilcoxon signed-rank test to identify
whether the presentation order of two techniques affected the task
completion time. The results indicated no significant effect of the
order on the completion time for Func (p= 0.1536) while a notable
significant effect for Script (p = 0.0083). That is, participants,
performed faster using the later technique in Script.

Number of clicks: In Func, participants expanded function
documentation and data tables 2.15 times using textual descriptions.
On the contrary, they clicked 0.6 times using our approach. Com-
pared to the baseline approach, participants sought less information
in completing the tasks. This result indicated that our approach
helped participants understand the semantics of transformations
with necessary visual encoding. The number of documentation and
table clicks was much fewer in Script, which might be because this
information helped little in script understanding tasks.

Preference: For comparing the helpfulness and interpretability
of the two techniques across ten tasks, we ran Mann-Whitney’s U
tests to evaluate the difference in the responses of our seven-point
Likert Scales. We found our technique (µ = 6.55, σ = 0.61) was
significantly more helpful in assisting participants to understand
transformation than textual descriptions (µ = 4.45, σ = 1.43):
U = 34.5, p < 0.01. In terms of interpretability, our technique (µ =

6.05, σ = 0.95) was easier to understand than textual descriptions
(µ = 4.40, σ = 1.39): U = 71, p < 0.01.

6.7 Qualitative Feedback
All participants showed great interest in the visualization design.
Some participants pointed out that data visualization is a universal
language that simplifies learning and communicating. For the Func
tasks, participants appreciate the design of glyphs. As P6 mentioned
that “it (the glyph visualization) is intuitive and informative.”
P14 added, “I do not need to look up the documentation of
functions because glyphs explain all.” For the Script tasks, the
node-link diagram presents table provenance using a sequence
of glyphs, which is efficient for navigation. As P3 noted that,

“It is laborious to extract the table dependencies from textual
descriptions compared to the visualization.” Besides, participants
also provided valuable suggestions for our design.

Comments on the glyphs: The glyph design can be improved
from the following aspects. First, the color encoding of different
glyphs may be confusing. P8 noted, “I would think they (columns
with the same color in different glyphs) are the same columns.”
She further suggested, “Different columns should be depicted
using a different color (in the provenance graph).” Second, some
participants (P10, P14) pointed out that text was superior to
visualization in some cases. For example, the filter function in R
deletes rows due to some conditions. When multiple conditions are
passed as parameters, our glyph design cannot distinguish whether
BOTH conditions are applied, or EITHER condition is used. On
the contrary, a textual description can articulate it clearly. P18 and
P7 recommended integrating textual description and visualization
to utilize the strength of the two techniques.

Comments on the provenance graph: The design of the
provenance graph may suffer from two issues. First, the provenance
graph would be too long when the number of transformations
increases. As a result, participants continuously zoomed and panned
the graph in finishing tasks. P2 suggested that the pipeline could
be presented vertically so that he could explore it using a scroll bar.
In addition, P10 commented, “The pipeline (provenance graph)
should be folded by default, and can be expanded on demand.”
Second, some participants (P3, P5) suggested supporting programs
with complex control flow. P6 commented, “The statements in
the study are too simple. I wonder how the visualization performs
in programs with IF-ELSE (conditional statement) or FOR (loop
statement) statements.”

7 EXAMPLE APPLICATIONS

To demonstrate how SOMNUS can be applied to different usage
scenarios, we design and implement two prototypes based on

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

… …

s_sum = s_sum.reset_index(drop=True)

r_sum = r_sum.reset_index(drop=True)

rev_sales = pd.concat([s_sum, r_sum])

rev_sales.loc[len(rev_sales)] = rev_sales.mean()

… …

12

13

14

15

16

Python Script

Data Tables

A

B D

C

rev_sales.loc[len(rev_sales)] = rev_sales.mean()

Category iPhone YOY growth

Q2/08 0.717 165.56

Q2/08 6.892 515.91

Q4/08 4.363 88.47

Q1/09 3.793 122.72

Category iPhone YOY growth

Q2/08 0.483 242.55

Q2/08 4.406 801.02

Q4/08 2.94 183.78

Q1/09 2.427 197.06

apple-iphone-revenue .csvapple-iphone-unit-sales .csv

Fig. 7. The application of SOMNUS in validating the process of data transformation written in Python. SOMNUS takes a piece of code (a) and data
tables (b) as input, and outputs a visualization showing table provenance across data transformations. (c) shows a snippet of the visualization. By
exploring the table provenance, a data worker can identify errors in the transformation with ease. (d) depicts the correct transformation beared in
mind by data workers.

SOMNUS. The first prototype helps data scientists validate the
procedure of data transformation written in Python, while the
second reveals intermediate data transformations given source and
target tables.

7.1 Double-checking
In this study, we collaborate with two data scientists in a national
research lab. They usually work together to finish an analytical
report. One critical task in their work is validation, or called
double-checking in practice. Specifically, when a data scientist
finishes a workflow, the other needs to check and validate the entire
workflow by scrutinizing the code and independently reproducing
the workflow. However, identifying errors in the code is not an
easy task, which requires a deep understanding of a large number
of functions and data models. Inspired by the real-world use case,
the first application illustrates how SOMNUS aids data scientists in
validating and debugging a script of the wrangling process.

Assume Lucy and Jane are two data scientists working in a
national research lab. After Jane finishes a data transformation
procedure written in Python, Lucy is invited to validate the piece of
code to ensure accuracy. The goal of the code is to combine
two tables [26] and compute average iPhone unit scales and
revenue across years. Lucy first uploads the two input tables
(Figure 7(b)) in the Data Panel and copy-pastes a code piece to
the Script Panel. After clicking “Upload and Run”, the provenance
graph is displayed in the Graph Panel. To examine each step,
Lucy explores individual transformations in the provenance graph
by zooming and panning. A glyph showing the combination
of two tables catches her eye. As shown in Figure 7(c), the
two tables are combined along the row axis. However, Lucy
makes sure that the two tables should be concatenated by column
(Figure 7(d)). To reason the result, she clicks the glyph to locate and
highlight the 15th line of code (Figure 7(a)). She notices that the
parameter axis is not explicitly mentioned in the concat function.

By default, however, the concatenation is performed along the row
axis with implicit axis=0. Hence, Lucy corrects the statement to
rev sales=pd.concat([s sum,r sum], axis=1), and finally obtains
the correct results.

7.2 MORPHEUS Revisited
MORPHEUS [25] is a program synthesis algorithm that generates a
script for data processing. The algorithm accepts multiple source
tables and a target table as input and automatically outputs lines
of R code to reflect the process of transformation. MORPHEUS is
useful in a number of scenarios. For example, the output script can
automate the process of data transformation and can be reused and
revised for future applications. The output of MORPHEUS, however,
is hard to understand due to obscure function usage and parameters.
In the second application, we apply SOMNUS to explain the scripts
generated by MORPHEUS. The adapted system shown in Figure 8 is
almost identical to the SOMNUS system. The difference is threefold.
First, the Data Panel accepts multiple source tables and a target
table, which are passed to MORPHEUS on the server side. Second,
based on code pieces returned by MORPHEUS and data tables,
SOMNUS runs and yields a series of input and output tables for
each function and a table provenance and passes them to the client
side. Third, the Script Panel shows the script that is not editable.

The application is motivated by a real-world case from Stack-
Overflow [1]. Assume Devin has two original tables (input1.csv,
input2.csv) and one target table (output1.csv) at hand. He first
uploads those tables to the system to understand the correct
approach to transforming the original tables to the target table. After
clicking the “Upload and Run” button, a piece of code is shown
in the Script Panel, and a provenance graph is displayed in the
Graph Panel. From the provenance graph, Devin sees seven edges,
indicating that the entire process takes seven data transformations.

Devin has no prior knowledge about R and dplyr. To get an idea
of individual functions, such as mutate, he clicks the 8th line of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 8. By combining MORPHEUS, our system generates and illustrates a series of data transformations given source data tables and a target table.
The system comprises four panels, i.e., a Data Panel allowing users to upload data tables, a Script Panel showing code pieces in R, a Table Panel
shows intermediate data tables, and a Graph Panel that depicts table provenance.

code in the Script Panel (Figure 8(b)). Then the transformation and
its input and output tables are located and highlighted in the Graph
Panel (Figure 8(d)). He figures out that the function creates a new
column called “total” from “value” divided by “size”. From the
Script Panel, Devin observes two select functions. He clicks the two
lines of code and finds they perform different transformations, i.e.,
one removes a column “value” while the other rearrange columns.

8 DISCUSSION

The evaluation shows that our glyph collection and SOMNUS are
effective in presenting data transformations, and SOMNUS can
be generalized to various programming languages and example
applications. Besides feedbacks and suggestions listed in Section 6,
we identify some limitations in the design and implementation of
SOMNUS.

First, the scalability of SOMNUS is limited in terms of the
number of functions and parameter combinations. The Code Parser
and Transformation Inference modules of SOMNUS are customized
for each function and parameter. The current prototype supports
25 functions from tidyr and dplyr in R and ten functions from
Pandas in Python with a small set of parameters. Extending our
work to a number of functions and parameters is possible. However,
it would be tedious. To align with a large number of functions that
are typically used for data transformation, a promising direction
is to explore learning-based algorithms that can map a function
and its parameters to a type of transformation at scale. This work
can act as a starting point for generating training data for such
algorithms. In addition, if a lengthy script contains numerous
operations, the provenance graph would be too long to navigate.
We acknowledge that the basic layout of transformation workflows
will result in node-link diagrams with a suboptimal aspect ratio
that require frequent panning/zooming. We notice that a number of
interaction techniques are designed to navigate lengthy content. For
example, focus+context screens [5] can facilitate the exploration of

multiscale documents. In addition, the collapse-to-zoom navigation
[6] is proposed to explore lengthy web pages. In future iterations,
we plan to integrate advanced interaction techniques to alleviate
the issue.

Second, the generalizability of the glyph space has yet been
explored. By depicting in-table and out-table text in the glyph,
the glyph collection can be generalized to a larger number of
transformations, as shown in Figure 2. On the other hand, the glyph
design lacks support for some commonly used data transformations,
such as Transpose. To what extent does the glyph space adapts to
transformations is unknown. In future research, we plan to explore
the mapping between the glyph space and transformation space to
understand the scope.

Third, the presentation of in-table text may result in incon-
sistencies in some data tables. For example, in Figure 4, the
Combine Rows shows the results of the colMeans function in
R, which derives the mean value for each column. However, the
mean value of the input table does match the results in the output
table. That is because all in-table text is derived from the original
data. In the current stage, we combine textual description and
visualization in the glyph design to alleviate the weakness caused
by inconsistencies. In addition, if the text in glyphs, including
column names, cell contents, and summary descriptions, is long,
it can not be fully displayed by default. This can be difficult for
users to spot their difference, especially when the text has the
same prefix. Currently, the text elision issue is resolved through
interaction. That is, when a user hovers over the omitted text in the
glyph, the whole text will be displayed.

Fourth, the shortcoming of individual glyphs has yet been
explored. Though the controlled study reveals the overall effective-
ness of visual description compared to textual description (Func
in Figure 6), it is far from enough to exploit the shortcoming of
individual glyphs, which requires enumerating possible functions
and their parameters. For example, the glyph designed for Delete

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Rows may be ineffective when a data table does not contain
counterexamples. Because the semantics of filtering conditions
can hardly be visualized without counterexamples. To obtain a
comprehensive understanding of the performance of the glyph
collection, we plan to validate individual glyphs using various
functions and parameter combinations and conduct a large-scale
user study for evaluation.

Fifth, the color encoding of glyphs may cause confusion in the
provenance graph. As one participant in the user study pointed out,
columns with the same color in different glyphs may be mistakenly
regarded as identical columns. We intend to combine visual designs
with interactions to resolve this ambiguity in our future work.

9 CONCLUSION AND FUTURE WORK

In this paper, we develop visualization techniques to illustrate the
semantics of code pieces in the context of data transformation.
To present individual transformations, we explore design space
consisting of two primary dimensions, i.e., key parameters to be
encoded and possible visual channels that can be mapped. Based
on the design space, we derive a collection of glyphs targeting 23
types of transformations. We argue that the glyph collection can
adapt to a broader range of transformations by depicting in-table
and out-table text. To illustrate a sequence of statements, we design
and develop SOMNUS, a pipeline that accepts code pieces and data
tables as input and generates a graph showing table provenance
across a series of data transformations. The results of a controlled
study have demonstrated the effectiveness and intuitiveness of the
visualization design for our study participants. Through example
applications, we show how SOMNUS can be adapted to different
programming languages and usage scenarios.

In the future, we plan to enhance SOMNUS by supporting a
large number of functions and parameters in dplyr (R), tidyr (R),
and Pandas (Python). However, the manual enhancement could
be laborious and tedious. We plan to investigate algorithms that
automatically map statements to data transformations to facilitate
the adaption of functions and parameters. Next, since complex
control flow is commonly used in data transformation, we would
like to explore how to visualize conditional statements and loops
in the provenance graph.

ACKNOWLEDGMENTS

This work was supported by NSFC (62072400, 62002331) and
the Collaborative Innovation Center of Artificial Intelligence by
MOE and Zhejiang Provincial Government (ZJU). The work
was also partially funded by the Zhejiang Lab (2021KE0AC02,
2020KE0AA02). We are grateful to our study participants and
anonymous reviewers for their insightful feedback.

REFERENCES

[1] recursive error in dplyr mutate. https://stackoverflow.com/questions/
30374143/recursive-error-in-dplyr-mutate, 2015.

[2] Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stone-
braker. DataXFormer: A robust transformation discovery system. In
Proceedings of IEEE International Conference on Data Engineering, pp.
1134–1145, 2016.

[3] E. E. Aftandilian, S. Kelley, C. Gramazio, N. Ricci, S. L. Su, and S. Z.
Guyer. Heapviz: interactive heap visualization for program understanding
and debugging. In Proceedings of International Symposium on Software
Visualization, pp. 53–62, 2010.

[4] L. Bartram, M. Correll, and M. Tory. Untidy data: The unreasonable
effectiveness of tables. arXiv preprint arXiv:2106.15005, 2021.

[5] P. Baudisch, N. Good, V. Bellotti, and P. Schraedley. Keeping things in
context: a comparative evaluation of focus plus context screens, overviews,
and zooming. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 259–266, 2002.

[6] P. Baudisch, X. Xie, C. Wang, and W.-Y. Ma. Collapse-to-zoom: viewing
web pages on small screen devices by interactively removing irrelevant
content. In Proceedings of Annual ACM Symposium on User Interface
Software and Technology, pp. 91–94, 2004.

[7] F. Beck, F. Hollerich, S. Diehl, and D. Weiskopf. Visual monitoring of
numeric variables embedded in source code. In Proceedings of First IEEE
Working Conference on Software Visualization (VISSOFT), pp. 1–4. IEEE,
2013.

[8] F. Beck, O. Moseler, S. Diehl, and G. D. Rey. In situ understanding of
performance bottlenecks through visually augmented code. In Proceedings
of International Conference on Program Comprehension, pp. 63–72. IEEE,
2013.

[9] beecycles. Power of irma. https://github.com/beecycles/Power of Irma,
2018.

[10] A. Bigelow, C. Nobre, M. Meyer, and A. Lex. Origraph: Interactive
network wrangling. In Proceedings of IEEE Conference on Visual
Analytics Science and Technology, pp. 81–92. IEEE, 2019.

[11] C. Bors, T. Gschwandtner, and S. Miksch. Capturing and visualizing
provenance from data wrangling. IEEE Computer Graphics and Applica-
tions, 39(6):61–75, 2019.

[12] M. Bostock. Visualizing algorithms. https://bost.ocks.org/mike/
algorithms/, 2014.

[13] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011.

[14] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst. Interactive record/replay for
web application debugging. In Proceedings of Annual ACM Symposium
on User Interface Software and Technology, pp. 473–484, 2013.

[15] J. Cheon, D. Kang, and G. Woo. VizMe: An annotation-based program
visualization system generating a compact visualization. In Proceedings
of the International Conference on Data Engineering 2015 (DaEng-2015),
pp. 433–441. Springer, 2019.

[16] N. Chotisarn, L. Merino, X. Zheng, S. Lonapalawong, T. Zhang, M. Xu,
and W. Chen. A systematic literature review of modern software
visualization. Journal of Visualization, 23(4):539–558, 2020.

[17] code2flow. online interactive code to flowchart converter. https://app.
code2flow.com/.

[18] C. Demetrescu, I. Finocchi, and J. T. Stasko. Specifying algorithm visual-
izations: Interesting events or state mapping? In Software Visualization,
pp. 16–30. Springer, 2002.

[19] Z. Deng, D. Weng, X. Xie, J. Bao, Y. Zheng, M. Xu, W. Chen, and Y. Wu.
Compass: Towards better causal analysis of urban time series. IEEE
Transactions on Visualization and Computer Graphics, 2021.

[20] B. S. D. Desk. Baltimore police overtime in fiscal years 2018 and 2019.
https://github.com/baltimore-sun-data/baltimore-police-overtime, 2020.

[21] dplyr. R package: dplyr v0.7.8. https://www.rdocumentation.org/packages/
dplyr/versions/0.7.8.

[22] I. Drosos, T. Barik, P. J. Guo, R. DeLine, and S. Gulwani. Wrex: A unified
programming-by-example interaction for synthesizing readable code for
data scientists. In Proceedings of CHI Conference on Human Factors in
Computing Systems, pp. 1–12, 2020.

[23] Eclipse. Eclipse layout kernel (ekl). https://www.eclipse.org/elk/.
[24] R. Faust, K. Isaacs, W. Z. Bernstein, M. Sharp, and C. Scheidegger.

Anteater: Interactive visualization for program understanding. arXiv
preprint arXiv:1907.02872, 2019.

[25] Y. Feng, R. Martins, J. Van Geffen, I. Dillig, and S. Chaudhuri.
Component-based synthesis of table consolidation and transformation
tasks from examples. ACM SIGPLAN Notices, 52(6):422–436, 2017.

[26] B. Figures. Apple iphone unit sales and revenue. https://barefigur.es/
companies/apple/iphone/, 2021.

[27] D. Fisher. Animation for visualization: Opportunities and drawbacks.
Beautiful visualization, 19:329–352, 2010.

[28] S. Grissom, M. F. McNally, and T. Naps. Algorithm visualization in cs
education: comparing levels of student engagement. In Proceedings of
ACM Symposium on Software Visualization, pp. 87–94, 2003.

[29] P. J. Guo. Online python tutor: embeddable web-based program visual-
ization for cs education. In Proceeding of ACM Technical Symposium on
Computer Science Education, pp. 579–584, 2013.

[30] P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer. Proactive wrangling:
Mixed-initiative end-user programming of data transformation scripts. In
Proceedings of Annual ACM Symposium on User Interface Software and
Technology, pp. 65–74, 2011.

https://stackoverflow.com/questions/30374143/recursive-error-in-dplyr-mutate
https://stackoverflow.com/questions/30374143/recursive-error-in-dplyr-mutate
https://github.com/beecycles/Power_of_Irma
https://bost.ocks.org/mike/algorithms/
https://bost.ocks.org/mike/algorithms/
https://app.code2flow.com/
https://app.code2flow.com/
https://github.com/baltimore-sun-data/baltimore-police-overtime
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8
https://www.eclipse.org/elk/
https://barefigur.es/companies/apple/iphone/
https://barefigur.es/companies/apple/iphone/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[31] S. Hansen, N. H. Narayanan, and M. Hegarty. Designing educationally
effective algorithm visualizations. Journal of Visual Languages &
Computing, 13(3):291–317, 2002.

[32] D. R. Hanson and J. L. Korn. A simple and extensible graphical debugger.
In Proceedings of the USENIX Annual Technical Conference, pp. 183–174,
1997.

[33] M. Harward, W. Irwin, and N. Churcher. In situ software visualisation. In
Proceedings of Australian Software Engineering Conference, pp. 171–180.
IEEE, 2010.

[34] J. Heer and A. Perer. Orion: A system for modeling, transformation and
visualization of multidimensional heterogeneous networks. Information
Visualization, 13(2):111–133, 2014.

[35] J. Hoffswell, A. Satyanarayan, and J. Heer. Visual debugging techniques
for reactive data visualization. In Proceedings of Computer Graphics
Forum, vol. 35, pp. 271–280. Wiley Online Library, 2016.

[36] J. Hoffswell, A. Satyanarayan, and J. Heer. Augmenting code with in
situ visualizations to aid program understanding. In Proceedings of CHI
Conference on Human Factors in Computing Systems, pp. 1–12, 2018.

[37] D. Huynh. Openrefine, 2021. https://openrefine.org.
[38] J. P. Inala and R. Singh. WebRelate: integrating web data with spreadsheets

using examples. Proceedings of ACM on Programming Languages,
2(POPL):1–28, 2017.

[39] Z. Jin, M. R. Anderson, M. Cafarella, and H. Jagadish. Foofah:
Transforming data by example. In Proceedings of ACM International
Conference on Management of Data, pp. 683–698, 2017.

[40] Jupyter. Jupyter notebook, 2021. https://jupyter.org.
[41] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. Van Ham, N. H. Riche,

C. Weaver, B. Lee, D. Brodbeck, and P. Buono. Research directions in
data wrangling: Visualizations and transformations for usable and credible
data. Information Visualization, 10(4):271–288, 2011.

[42] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive
visual specification of data transformation scripts. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pp.
3363–3372, 2011.

[43] S. Kasica, C. Berret, and T. Munzner. Table Scraps: An actionable
framework for multi-table data wrangling from an artifact study of
computational journalism. IEEE Transactions on Visualization and
Computer Graphics, 2020.

[44] M. Khan, L. Xu, A. Nandi, and J. M. Hellerstein. Data tweening:
incremental visualization of data transforms. Proceedings of the VLDB
Endowment, 10(6):661–672, 2017.

[45] A. J. Ko and B. A. Myers. Designing the whyline: a debugging interface
for asking questions about program behavior. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 151–
158, 2004.

[46] D. A. Kosower, J. J. Lopez-Villarejo, and S. Roubtsov. Flowgen:
Flowchart-based documentation framework for c++. In Proceedings
of IEEE International Working Conference on Source Code Analysis and
Manipulation, pp. 59–64. IEEE, 2014.

[47] W. L. Kuechler and M. G. Simkin. How well do multiple choice tests
evaluate student understanding in computer programming classes? Journal
of Information Systems Education, 14(4):389, 2003.

[48] C. Lewis and G. Olson. Can principles of cognition lower the barriers
to programming? In Proceedings of Empirical studies of programmers:
second workshop, pp. 248–263, 1987.

[49] T. Lieber, J. R. Brandt, and R. C. Miller. Addressing misconceptions
about code with always-on programming visualizations. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pp.
2481–2490, 2014.

[50] H. Lieberman and C. Fry. ZStep 95: A reversible, animated source
code stepper. In Software Visualization: Programming as a Multimedia
Experience, pp. 277–292. Citeseer, 1997.

[51] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau. End-user
programming of mashups with vegemite. In Proceedings of International
Conference on Intelligent User Interfaces, pp. 97–106, 2009.

[52] J. Liu, N. Boukhelifa, and J. R. Eagan. Understanding the role of
alternatives in data analysis practices. IEEE Transactions on Visualization
and Computer Graphics, 26(1):66–76, 2019.

[53] S. Liu, G. Andrienko, Y. Wu, N. Cao, L. Jiang, C. Shi, Y.-S. Wang, and
S. Hong. Steering data quality with visual analytics: The complexity
challenge. Visual Informatics, 2(4):191–197, 2018.

[54] Z. Liu, S. B. Navathe, and J. T. Stasko. Network-based visual analysis
of tabular data. In Proceedings of IEEE Conference on Visual Analytics
Science and Technology, pp. 41–50. IEEE, 2011.

[55] J. Morcos, Z. Abedjan, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stone-
braker. DataXFormer: An interactive data transformation tool. In

Proceedings of ACM SIGMOD International Conference on Management
of Data, pp. 883–888, 2015.

[56] T. Munzner. A nested model for visualization design and validation. IEEE
Transactions on Visualization and Computer Graphics, 15(6):921–928,
2009.

[57] L. Nguyen, S. Krüger, P. Hill, K. Ali, and E. Bodden. VisuFlow: a
debugging environment for static analyses. In Proceedings of IEEE/ACM
International Conference on Software Engineering: Companion (ICSE-
Companion), pp. 89–92. ACM, 2018.

[58] C. Niederer, H. Stitz, R. Hourieh, F. Grassinger, W. Aigner, and M. Streit.
TACO: visualizing changes in tables over time. IEEE Transactions on
Visualization and Computer Graphics, 24(1):677–686, 2017.

[59] S. Oney and B. Myers. FireCrystal: Understanding interactive behaviors
in dynamic web pages. In Proceedings of IEEE Symposium on Visual
Languages and Human-Centric Computing, pp. 105–108, 2009.

[60] A. Oy. Visustin v7 flow chart generator. https://www.aivosto.com/visustin.
html, 2013.

[61] X. Pu, S. Kross, J. M. Hofman, and D. G. Goldstein. Datamations:
Animated explanations of data analysis pipelines. In Proceedings of CHI
Conference on Human Factors in Computing Systems, pp. 1–14, 2021.

[62] Y. Qian and J. Lehman. Students’ misconceptions and other difficulties
in introductory programming: A literature review. ACM Transactions on
Computing Education, 18(1):1–24, 2017.

[63] E. D. Ragan, A. Endert, J. Sanyal, and J. Chen. Characterizing provenance
in visualization and data analysis: an organizational framework of
provenance types and purposes. IEEE Transactions on Visualization
and Computer Graphics, 22(1):31–40, 2015.

[64] J. Reback, W. McKinney, J. Den Van Bossche, T. Augspurger, P. Cloud,
A. Klein, M. Roeschke, S. Hawkins, J. Tratner, C. She, et al. pandas-
dev/pandas: Pandas 1.0. 3. Zenodo, 2020.

[65] C. A. Shaffer, M. Akbar, A. J. D. Alon, M. Stewart, and S. H. Edwards.
Getting algorithm visualizations into the classroom. In Proceedings of
ACM Technical Symposium on Computer Science Education, pp. 129–134,
2011.

[66] C. A. Shaffer, M. Cooper, and S. H. Edwards. Algorithm visualization:
a report on the state of the field. In Proceedings of SIGCSE Technical
Symposium on Computer Science Education, pp. 150–154, 2007.

[67] N. Shrestha, C. Botta, T. Barik, and C. Parnin. Here we go again: why
is it difficult for developers to learn another programming language?
In Proceedings of IEEE/ACM International Conference on Software
Engineering, pp. 691–701. IEEE, 2020.

[68] M. G. Simkin and W. L. Kuechler. Multiple-choice tests and student
understanding: What is the connection? Decision Sciences Journal of
Innovative Education, 3(1):73–98, 2005.

[69] Soft32. AutoFlowchart. https://autoflowchart.soft32.com/.
[70] T. Software. Tableau prep builder, 2021. https://www.tableau.com/

products/prep.
[71] J. Sorva, V. Karavirta, and L. Malmi. A review of generic program

visualization systems for introductory programming education. ACM
Transactions on Computing Education, 13(4):1–64, 2013.

[72] J. Sundararaman and G. Back. HDPV: interactive, faithful, in-vivo runtime
state visualization for c/c++ and java. In Proceedings of ACM Symposium
on Software Visualization, pp. 47–56, 2008.

[73] B. Swift, A. Sorensen, H. Gardner, and J. Hosking. Visual code anno-
tations for cyberphysical programming. In Proceedings of International
Workshop on Live Programming (LIVE), pp. 27–30. IEEE, 2013.

[74] T. Tang, Y. Wu, L. Yu, Y. Li, and Y. Wu. VideoModerator: A risk-
aware framework for multimodal video moderation in e-commerce. IEEE
Transactions on Visualization and Computer Graphics, 2021.

[75] tidyr. R package: tidyr v1.1.3. https://www.rdocumentation.org/packages/
tidyr/versions/1.1.3.

[76] Trifacta. Trifacta wrangler, 2021. https://www.trifacta.com/products/
wrangler-editions/#wrangler.

[77] J. Urquiza-Fuentes and J. A. Velázquez-Iturbide. A survey of program
visualizations for the functional paradigm. In Proceedings of Program
Visualization Workshop, pp. 2–9, 2004.

[78] J. Wang, J. Wu, A. Cao, Z. Zhou, H. Zhang, and Y. Wu. Tac-Miner:
Visual tactic mining for multiple table tennis matches. IEEE Transactions
on Visualization and Computer Graphics, 27(6):2770–2782, 2021.

[79] H. Wickham, R. François, L. Henry, and K. Müller. dplyr: A Grammar of
Data Manipulation, 2021. R package version 1.0.4.

[80] H. Wickham and L. Henry. tidyr: Tidy messy data. r package version 1.0.
2, 2020.

[81] L. Ying, T. Tang, Y. Luo, L. Shen, X. Xie, L. Yu, and Y. Wu. GlyphCreator:
Towards example-based automatic generation of circular glyphs. IEEE
Transactions on Visualization and Computer Graphics, 2021.

https://openrefine.org
https://jupyter.org
https://www.aivosto.com/visustin.html
https://www.aivosto.com/visustin.html
https://autoflowchart.soft32.com/
https://www.tableau.com/products/prep
https://www.tableau.com/products/prep
https://www.rdocumentation.org/packages/tidyr/versions/1.1.3
https://www.rdocumentation.org/packages/tidyr/versions/1.1.3
https://www.trifacta.com/products/wrangler-editions/#wrangler
https://www.trifacta.com/products/wrangler-editions/#wrangler

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[82] A. Zeller and D. Lütkehaus. DDD—a free graphical front-end for unix
debuggers. ACM Sigplan Notices, 31(1):22–27, 1996.

Kai Xiong is a Ph.D. student at the State Key
Laboratory of CAD&CG, Zhejiang University, and
works under the supervision of Prof. Yingcai Wu.
He holds a bachelor’s degree in Computer Sci-
ence from Xidian University. His main research
interests center on visual analytics and data
wrangling. He is also interested in how to apply
artificial intelligence to data visualization.

Dr. Siwei Fu is an associate research scientist in
Zhejiang Lab. His main research interests include:
visual analytics, intelligent user interface, and
natual language interface. He received his Ph.D.
degree in Computer Science and Engineering
from the Hong Kong University of Science and
Technology. For more information, please visit
https://fusiwei339.bitbucket.io/

Guoming Ding received his B.S. degree in Me-
chanical Engineering from Xi’an Jiaotong Univer-
sity in 2020. He is currently pursuing the master’s
degree with the State Key Lab of CAD&CG,
Zhejiang University. His research interests mainly
include the visualization and causal analysis.

Zhongsu Luo received his B.S. degree in Soft-
ware Engineering from Zhejiang University of
Technology in 2020. He is currently pursuing
the master’s degree in Zhejiang University of
Technology. His research interests include the
visualization, and visual analysis.

Rong Yu received her master’s degree in Visual
Communication Design from Hangzhou Normal
University in 2015. She has eight years of exper-
tise in visual design. For more information, please
visit https://dribbble.com/yurongtian

Wei Chen is a professor at the State Key Lab
of CAD&CG, Zhejiang University. His research
interests are visualization and visual analysis.
He has published more than 30 IEEE/ACM
Transactions and IEEE VIS papers. He ac-
tively served as a guest or associate editor of
IEEE Transactions on Visualization and Com-
puter Graphics, IEEE Transactions on Intelligent-
Transportation Systems, and Journal of Visual-
ization. For more information, please refer to
http://www.cad.zju.edu.cn/home/chenwei/

Hujun Bao is a professor with the State Key Lab-
oratory of CAD&CG and the College of Computer
Science and Technology, Zhejiang University Zhe-
jiang, China. He leads the 3D graphics computing
group in the lab, which mainly makes researches
on geometry computing, 3D visual computing,
real-time rendering, and their applications. His
research goal is to investigate the fundamental
theories and algorithms to achieve good visual
perception for interactive digital environments,
and develop related systems.

Yingcai Wu is a professor with the State Key Lab
of CAD&CG, Zhejiang University, China. His re-
search interests include information visualization
and visual analytics, with focuses on urban com-
puting, sports science, immersive visualization,
and social media analysis. Prior to his current
position, he was a postdoctoral researcher with
the University of California, Davis from 2010 to
2012, and a researcher in Microsoft Research
Asia from 2012 to 2015. For more information,
please visit http://www.ycwu.org.

	Introduction
	Related Work
	Program Visualization
	Data Wrangling
	Provenance

	Design Requirement
	Design of Glyphs
	Parameters Space
	Design Rationale
	Results

	Design of Somnus
	Program Adaptor
	Program Execution
	Code Parser
	Transformation Inference
	Failure Modes

	Visualization Generator
	Constructing Data Provenance
	Presenting Glyphs

	Implementation

	User Study
	Participants and Apparatus
	Techniques
	Tasks and Design
	Data
	Procedure
	Quantitative Results
	Qualitative Feedback

	Example Applications
	Double-checking
	Morpheus Revisited

	Discussion
	Conclusion and Future Work
	References
	Biographies
	Kai Xiong
	Dr. Siwei Fu
	Guoming Ding
	Zhongsu Luo
	Rong Yu
	Wei Chen
	Hujun Bao
	Yingcai Wu

